
Departmental Coversheet

MSc in Computer Science 2020-21

Project Dissertation

1

Project Dissertation title: On Representation Learning for Deterministic
Uncertainty Estimation 

Term and year of submission: Trinity Term 2021 
Candidate Number: 1047481 



On Representation Learning for
Deterministic Uncertainty Estimation

Candidate Number: 1359080

University of Oxford

A thesis submitted for the degree of
Master of Science in Computer Science

Trinity Term 2021



Abstract

Deep neural networks (DNNs) have made tremendous progress and become the
dominant approaches in many applications. However, their deployment in safety-
critical areas remains limited since they can make over-confidently wrong predictions
and cannot inform humans about their uncertainties. Therefore, uncertainty
estimation is crucial for DNNs to be further deployed in real-world applications.
Despite the differences among current uncertainty estimators, all these methods
rely on the rich representations learned by DNNs. In this dissertation, we will
investigate two problems in understanding the representations for uncertainty
estimation in DNNs. In Chapter 3, we will investigate a line of models that
aim to solve the so-called feature collapse problem. This problem describes that
data far apart in the input space can be mapped to near-identical points by the
feature extractor of DNNs, making it impossible to produce reasonable uncertainty
estimates. We show that the considered models can preserve the distances in the
low frequency domain under mild conditions, thus preventing feature collapse in
this domain. In Chapter 4, we will investigate the interaction of representations
and uncertainty estimation. Specifically, we will show that even state-of-the-art
uncertainty estimation methods cannot consistently perform well on different out-
of-distribution detection benchmarks. Using a decomposition of the representations,
we will demonstrate that the desired representations for uncertainty estimation in
different tasks are different. With our decomposition, we can achieve consistently
high performance across different benchmarks. Finally, we conclude our dissertation
with a discussion of our limitations and offer outlooks on extensions and promising
future directions.



Contents

1 Introduction 1
1.1 The Importance of Uncertainty in Deep Neural Networks . . . . . . 1
1.2 Challenges of Uncertainty Estimation in Deep Neural Networks . . 3
1.3 Structure of the Dissertation . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 8
2.1 Uncertainty Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Sources and Types of Uncertainty . . . . . . . . . . . . . . . 8
2.1.2 Methods for Uncertainty Estimation . . . . . . . . . . . . . 10

2.2 Out-of-distribution Detection . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 What is Out-of-distribution Detection? . . . . . . . . . . . . 14
2.2.2 Methods for Out-of-distribution Detection . . . . . . . . . . 14
2.2.3 Evaluating Out-of-distribution Detection Methods . . . . . . 15

3 A Frequency Analysis of the Bi-Lipschitz Regularization for Con-
volutional ResNets 17
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Problems of Current Implementation for Bi-Lipschitz Regularization 19
3.3 A Frequency Analysis of Residual Networks with Bi-Lipschitz Regu-

larization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.1 Background: Downsampling in Convolutional Networks from

a Frequency Perspective . . . . . . . . . . . . . . . . . . . . 20
3.3.2 Residual Networks and the Frequency Content of Images . . 22

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Decomposing Representations for Out-of-distribution Detection 29
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.1 Representation-based OoD Detection . . . . . . . . . . . . . 31
4.2.2 Mahalanobis Distance for OoD Detection . . . . . . . . . . . 32

4.3 Motivating Observations . . . . . . . . . . . . . . . . . . . . . . . . 34

iii



Contents iv

4.4 Decomposing Representations . . . . . . . . . . . . . . . . . . . . . 37
4.4.1 New Scoring Function Based on the Decomposition . . . . . 38
4.4.2 Dataset Distance Metric Based on Decomposition . . . . . . 39

4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5.1 OoD Detection on Simulated Data . . . . . . . . . . . . . . 39
4.5.2 OoD Detection on Image Datasets . . . . . . . . . . . . . . . 40
4.5.3 Interpreting Uncertainty . . . . . . . . . . . . . . . . . . . . 43

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Discussion 45
5.1 Conclusions and Limitations . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2.1 Rethinking the Bi-Lipschitz Constraint . . . . . . . . . . . . 47
5.2.2 Interpreting the Uncertainty Estimates . . . . . . . . . . . . 48

References 50



1
Introduction

Contents
1.1 The Importance of Uncertainty in Deep Neural Net-

works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Challenges of Uncertainty Estimation in Deep Neural

Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Structure of the Dissertation . . . . . . . . . . . . . . . 7

1.1 The Importance of Uncertainty in Deep Neu-
ral Networks

In the last decade, deep neural networks (DNNs) have made tremendous progress and

have become the dominant approach to a variety of applications such as computer

vision [1, 2], natural language processing [3, 4], and healthcare [5, 6]. Despite

the impressive scalability and supervised learning performance, the deployment of

these models remains limited in real-world applications where intelligent systems

are involved in making decisions that can affect humans. There are many reasons

for this limitation. In particular, DNNs are very sensitive to domain shifts and

frequently give overconfident predictions on out-of-distribution data [7, 8]. For

example, Figure 1.1 shows a famous example of how easily DNNs are fooled to give

1



1. Introduction 2

Figure 1.1: Example images that fool state-of-the-art DNNs trained on ImageNet1 to
classify with ≥ 99.6% certainty to be a familiar object [7].

high confident predictions [7]. In real-world deployments, depending on applications,

an intelligent system may frequently encounter data that are unlike the training

data. The overconfident predictions on these data may then pose devastating results.

To overcome these problems, it is essential to provide uncertainty estimates, so that

the system would withhold uncertain predictions and defer to human experts.

Consider a concrete example: in many autonomous driving vehicles, DNNs

are responsible for feature extraction tasks such as image segmentation to process

raw sensory input [10]. The outputs of DNNs are then fed into a decision-making

system which may rely on a fixed set of rules. In this case, failures in the feature

extraction process can lead to decisions that may endanger human lives. In fact,

the first fatality of autonomous driving was just caused by the failure of the

DNNs to distinguish the tractor trailer and the background, leaving the Automatic

Emergency Brake untriggered [11].

Therefore, uncertainty is crucial for DNNs to be further deployed in a broader

range of real-world applications. However, as we will discuss in the next section,

it is not straightforward to obtain uncertainty estimates from DNNs.



1. Introduction 3

1.2 Challenges of Uncertainty Estimation in Deep
Neural Networks

Deep learning

Before discussing the challenges of uncertainty estimation, we first formally define

what a deep neural network is. A deep neural network (DNN) is a hierarchy of

functions where each intermediate function is called a layer and the outputs of such

functions are called intermediate feature maps or representations. In its simplest

form, a DNN can be constructed by repeating matrix multiplications and element-

wise non-linearities. For example, a 2-layer neural network can be implemented

as f(x) = W2σ(W1x), where W1,W2 are matrices and σ is an element-wise non-

linearity function (e.g., tanh or ReLU [12]). There are also other function choices

that suit specific data types. In this work, we will mainly be working with image

datasets, so we will only introduce the convolutional neural networks (CNNs),

specifically designed for data with some spatial topology (e.g., images, videos). The

core component of a CNN is the convolutional layer, which accepts a filter w and a

high-dimensional input a (i.e., a tensor) as inputs and convolves this filter by sliding

it across all spatial positions of the input tensor and computing a dot product at each

position. To be concrete, consider a convolutional layer between layer l and l + 1,

suppose the layer input a is of shape ml × nl × Fl, and we apply Fl+1 filters each of

shape Wf ×Hf ×Fl, the the output z of the convolutional layer can be expressed as:

zl+1
i′,j′,f ′ = bl+1,f ′ +

Wf ′∑
i=1

Hf ′∑
j=1

Fl∑
f=1

ali′+i−1,j′+j−1,fw
l+1,f ′

i,j,f .

The filters w and biases b are then the weights of convolutional layers. In classification

tasks, the output of the penultimate convolutional layer is fed into a logistic regressor

whose weights are trained together with the convolutional layers. Therefore, we

also call the function from raw input to the output of penultimate convolutional

layer the feature extractor.

To train such models, the typical approach is to use (stochastic) gradient

descent [13] to update the weights of DNNs, i.e., W ′ = W − α∇WL, where W,W ′



1. Introduction 4

are the old and new weights, α is the step size, and ∇WL is the gradient of the

objective function L on W . Specifically, given an objective function which computes

the errors L(f(x), y) between predictions f(x) and the targets y, the gradients of

the objective function are calculated using the backpropagation algorithm [14] and

summed over the entire dataset or a minibatch. The choice of the objective function

is task-dependent. In classification, we usually use the cross-entropy function [13],

which encourages the model to distinguish different classes. Thus DNNs trained

using such methods are discriminative models.

One property that makes DNNs highly efficient is that it only requires a

single forward pass to produce the predictions. This is because their weights

are deterministic. That is, we only have point estimates of the weights instead of a

distribution over all possible weights. Therefore, we cannot use Bayesian inference

to compute a distribution over the outputs that describe how likely a specific value

is. In classification tasks, the predictive probability of the final logistic regressor,

i.e., the softmax output, is sometimes mistakenly treated as model confidence [7, 15].

However, as shown by [16, 17], data points that are far from the training distribution

will always be assigned high softmax probability due to the extrapolation property

of DNNs that use ReLU activations. Figure 1.1 just shows many examples of

out-of-distribution data that are assigned ≥ 99.6 softmax probability.

The deterministic uncertainty estimation problem

Since uncertainty is essential yet not a built-in property of DNNs, we would like to

equip a DNN with uncertainty estimation ability. This is the so-called deterministic

uncertainty estimation problem, which is different from uncertainty estimation

under Bayesian modeling where we have (approximate) probabilistic distributions

over weights or posteriors [18]. In recent years, this field has attracted a lot of

attention [19–26]. Approaches include combining a deterministic DNN feature

extractor with a kernel-based last-layer and then approximating the variance over

the posterior distribution p(y|x) as the uncertainty estimate [22, 23]; or using a

density estimate of the intermediate features p(z|x) to capture the uncertainty [24,



1. Introduction 5

(a) (b)

Figure 1.2: On the left, we visualize a 2D binary classification task where the training
data are from two Gaussian distributions (green). We also colored other points according
to their log probability under the distribution of the training data. Additionally, a specific
point is marked with a star. On the right, we see the features computed by a standard
DNN. As we can see, the inputs are collapsed into a single line, and the marked star
moves from an unrelated area in input space to the class data in feature space, making it
impossible to produce reasonable uncertainty estimates on top of these features. Figure is
taken from [23].

26]. There are also other approaches that make use of the activity patterns of the

intermediate features [25, 27]. We will review these methods in detail in Chapter 2.

Despite the differences in the uncertainty estimators, all these methods involve

using a DNN-based feature extractor. The outputs of the feature extractor, also

known as representations, will thus have a significant influence over the uncertainty

estimates. For example, in Figure 1.2 we show a phenomenon called “feature

collapse” which describes that the DNNs can map two points that are far apart in

input space to a near identical point in the feature space, that is, given a feature

extractor f , we can find points x1, x2 such that 0 ≈ ||f(x1)− f(x2)|| � ||x1 − x2||.

This will make any uncertainty estimator on top of such representations unable to

give a reasonable estimate. This problem motivates the introduction of bi-Lipschitz

constraint in DNNs [21, 23], that is, given a feature extractor f ,

∃ L1, L2, s.t. L1||x− y|| ≤ ||f(x)− f(y)|| ≤ L2||x− y||,∀x, y.

The lower bound of the bi-Lipschitz constraint can thus effectively prevent the

aforementioned feature collapse problem. Besides feature collapse, there may be



1. Introduction 6

many other properties of representations from a discriminatively trained neural

network that are undesirable for uncertainty estimation, e.g., consisting of many

high-frequency signals of inputs that are spuriously correlated with the labels [8].

Also, we know very little about the interaction between representations and

uncertainty estimators, which may explain the performance differences of uncertainty

estimators in tasks like out-of-distribution detection (see Chapter 2). In short, our

understanding of the representations for deterministic uncertainty estimation is far

from complete. In this dissertation, we aim to fill this gap by targeting this problem:

What representations should we use for deterministic uncertainty esti-
mation?

In particular, we investigate two problems under this theme. In Chapter 3, we

will investigate the feature collapse problem and the previously proposed bi-Lipschitz

models that aimed to solve this problem [22, 23, 26]. We demonstrate that despite

being well-motivated in theory, current implementations of bi-Lipschitz models are

not bi-Lipschitz in practice. However, with a frequency analysis, we show that such

models can still mitigate the feature collapse in the low-frequency domain. The

conditions of our theorem provide us with new insights into the desirable properties

of representations that can prevent feature collapse.

The second problem is how the representations interact with the uncertainty es-

timators. Specifically, we will show that even state-of-the-art uncertainty estimation

methods cannot consistently perform well on different out-of-distribution (OoD)

detection benchmarks (Table 4.1). Such performance instability is undesirable

and casts doubts on how these methods would behave in various real-world

applications. In Chapter 4, we show that this is because the desired representations

for uncertainty estimation in different tasks are different. Moreover, even when

the full representations contain the desired representations, the redundant parts

will also influence the uncertainty estimates, resulting in degraded performance.

Therefore, we propose to solve this problem by decomposing the representations

and performing uncertainty estimation on them separately. We show that we can

achieve consistently high performance across the different benchmarks with a proper



1. Introduction 7

decomposition and a simple integration of the uncertainty estimates. Furthermore,

our decomposition can also help us interpret the uncertainty estimates by comparing

the contributions from different types of representations. This work provides us

with insights on how to build uncertainty estimation methods that can adapt to

different tasks by taking the types of representations into consideration.

1.3 Structure of the Dissertation

In Chapter 2, we will first review the necessary background to understand our work.

Specifically, we will introduce uncertainty estimation and one of its applications –

out-of-distribution detection. In Chapter 3 and 4, we will investigate two problems

in representation learning for deterministic uncertainty estimation. These two

chapters aim to understand how current implementations of bi-Lipschitz models

influence the representations and how the interaction between representations

and uncertainty estimation can be taken advantage of, respectively. We hope

they can provide insights for future research in this field. Finally, in Chapter 5,

we conclude our thesis by pointing out our limitations and offering outlook on

interesting directions for future work.



2
Background

Contents
2.1 Uncertainty Estimation . . . . . . . . . . . . . . . . . . . 8

2.1.1 Sources and Types of Uncertainty . . . . . . . . . . . . 8
2.1.2 Methods for Uncertainty Estimation . . . . . . . . . . . 10

2.2 Out-of-distribution Detection . . . . . . . . . . . . . . . 14
2.2.1 What is Out-of-distribution Detection? . . . . . . . . . 14
2.2.2 Methods for Out-of-distribution Detection . . . . . . . . 14
2.2.3 Evaluating Out-of-distribution Detection Methods . . . 15

2.1 Uncertainty Estimation

As we discussed in Chapter 1, uncertainty is vital for the real-world deployment of

DNNs. In this section, we will first introduce the sources and types of uncertainty

and then review representative methods for uncertainty estimation. Finally, we

will discuss the representation learning for uncertainty estimation.

2.1.1 Sources and Types of Uncertainty

From data acquisition to inference by our model, every step in a machine learning

pipeline can incur uncertainty and errors, which influence the uncertainty of the

8



2. Background 9

final prediction of a DNN. In [28], the authors summarized that five factors are

most vital for the cause of uncertainty in the predictions:

1. The variability in real-world situations. The real-world situations are

ever-changing, and during the test, many variables may have been different

from the training data. For example, COVID data that were collected in the

second wave may be different from those in the first wave because the genome

type of the virus has changed [29]. This is also known as a distribution shift.

Studies show that neural networks are sensitive to distribution shifts, and this

can cause significant changes in the prediction [30, 31].

2. The errors inherent to the measurement systems. These include

random noise in the measurement of data (x, y), e.g., measurement noise

and labeling errors. Besides, limited information in the measurements can

also cause such errors, e.g., images with low resolution. Such errors can only

be reduced by improving the measurement systems.

3. The errors in the architecture specification of the DNN. The archi-

tecture of a neural network can directly influence the prediction and its

uncertainty. For example, the number of layers a DNN can influence its

number of learnable parameters and thus the model capacity. If the model

has too many layers, it can over-fit the training data, leading to over-confident

predictions [32].

4. The errors in the training procedure of the DNN. The training of a

neural network is stochastic due to the randomness in decisions like the order

of dataset and initialization of weights. Since the loss landscape of a DNN

is shown to be highly non-linear [33, 34], such stochasticity will result in

differently trained DNNs to have very different final weights, and thus lead to

changes in their predictions.



2. Background 10

Figure 2.1: Types of uncertainty [28]

5. The errors caused by unknown data. Such errors occur during inference

(test) time. At this stage, the neural network can encounter data that are

entirely out of the domain of its training data, resulting in high uncertainty.

This is similar but different from the first factor, where distribution shifts cause

uncertainty. Unknown data can be described as data shifted so significantly

that they should be considered inputs for a completely different task (while

data under distribution shifts are still for the same task).

We can then categorize these sources of uncertainty into two categories (1)

data (aleatoric) uncertainty (the second factor), which is caused by the inherent

measurement noise or ambiguity in the data; and (2) model (epistemic) uncertainty

(all the factors except the second factor), which is caused by shortcomings of our

model and describes our ignorance about the models that are most suitable to

explain the data. In Figure 2.1, we illustrate some examples of model and data

uncertainty. Note that data uncertainty is not reducible by enlarging the dataset

size and can only describe the uncertainty of the in-domain data, i.e., the data in

the same domain as the training data. While model uncertainty can be reduced

with more data or knowledge by, for example, collecting more training data to

cover more variability in the environment.

2.1.2 Methods for Uncertainty Estimation

Uncertainty estimation is a challenging task since the different uncertainties as

described above can, in general, not be modeled accurately. For the data (aleatoric)



2. Background 11

uncertainty, since it is caused by the inherent noise in the data, we can often use

the ambiguity of the prediction (the output) of the DNNs, e.g., the entropy of

the softmax probability output of a DNN trained for classification can be used to

capture the data uncertainty [26, 35]. Note that, as we mentioned, data uncertainty

has to be estimated only on the in-domain data. Therefore, it is essential to make

sure that out-of-distribution data are filtered before estimating data uncertainty. For

the model (epistemic) uncertainty, there are many different approaches. Roughly,

they can be categorized as probabilistic and deterministic methods.

Probabilistic methods use Bayesian modeling, and estimates the model (epis-

temic) uncertainty as the variance of a posterior prediction by marginalizing over the

distributions of network weights [36, 37]. To be specific, the posterior distribution

over the prediction is

p(y | x,D) =
∫
p(y | x, θ)p(θ | D)dθ, (2.1)

where D is the training dataset, p(θ | D) is the posterior distribution over the

weights of the DNN. Apparently, these methods also require modeling distributions

over the weights, significantly increasing the computation burden during training,

limiting their scalability. Besides modeling distribution over the weights, recent

works have also investigated structure uncertainty such as uncertainty over depths

and activation functions [38, 39]. Alternatively, when an explicit posterior is not

available, we can still sample from an approximate posterior by using dropout

samples [19], i.e., performing multiple forward passes with the dropout [40] to get

different outputs, or using several individual models as in [20].

Deterministic methods for uncertainty estimation try to use representations of

the models directly. Therefore, they can keep the scalability and performance of

DNNs. For example, we can combine a deterministic neural network with a kernel-

based final layer(s), such as Gaussian Processes [41]. To estimate the uncertainty,

we can use an approximate variance over the posterior predictive distribution p(y|x)

of the kernel-based layers [21, 22, 42]. Methods of this type allow us to combine the

scalability and representation learning power of neural networks and the uncertainty



2. Background 12

estimation of Bayesian methods. However, they need to modify the architecture

and train the new models, which are not ideal for many real-world applications.

Alternatively, some works use a density estimation of the intermediate features of a

DNN [21–24, 26, 43]. Besides density estimation, we can also utilize the activity

patterns of intermediate layers [25] and the correlations of these patterns [27] to

capture epistemic uncertainty. These methods can perform on a pre-trained model

with a single forward pass and are thus more cost-effective and scalable than the

other two approaches. When done carefully, these models can achieve competitive

performance without high computational costs.

Representation learning for deterministic uncertainty estimation

In this dissertation, we will study the deterministic methods for uncertainty

estimation due to their scalability. Despite the differences in the deterministic

uncertainty estimation methods, they all use the representations learned by a DNN.

However, as we mentioned in Chapter 1, understanding the desirable properties of

representations for deterministic uncertainty estimation is still an open research

question. Note that the desirable properties of representations can be task-dependent.

For example, in an object classification task, we may want our representations to

focus more on high-level semantic features such as shapes of objects. In this

case, the uncertainty estimates will give low uncertainty to data that have shapes

of a particular object class but different low-level features such as textures and

high uncertainty to data of new shapes. This task dependence is sometimes

overlooked in many previous works.

Current works in representations for uncertainty estimation can thus be catego-

rized based on their aimed properties of representations. The most commonly

desired property is to include more diverse representations, specifically, both

classification-relevant features encouraged by the cross-entropy loss and features that

can describe the in-distribution data but may not be essential for classification (e.g.,

textures). For example, to make the representations more aware of semantically

meaningful features, [44] trains DNNs using rotation prediction (i.e., training DNNs



2. Background 13

to recognize the 2D rotation applied to the image that it gets as input), [45]

uses contrastive learning (i.e., encourages the features of transformed versions of

the same image to cluster together and to pull all other images away). However,

although these methods aim to learn representations as inclusive as possible, in

practice, they are focusing more on high-level features suitable for specific tasks.

This may limit their scope of applications. Another property of representations

is to contain features that can distinguish between the in distribution data and

(general) out-of-distribution data. This can be done by explicitly using an auxiliary

OoD dataset and a modified objective function [17, 46, 47], or by adversarial

training, which may help representations aware of the “boundaries” of the in-

distribution representations [48]. The problem with such methods is two-fold:

first, they need extra training time and memory; second, it is hard to show that

their representations can learn representations that are aware of all the OoD

data – since just as representations, OoD is also a task-dependent concept, as

we will introduce in the next section. Finally, motivated by the feature collapse

problem introduced in Chapter 1 (Figure 1.2), some works propose to enforce

bi-Lipschitzness on the feature extractor, i.e., given a feature extractor f , ∃L1, L2,

s.t. L1||x − y|| ≤ ||f(x) − f(y)|| ≤ L2||x − y||. The feature collapse can then be

prevented since the distance between features are lower bounded by the distance

between inputs. To implement bi-Lipschitz models, current implementations [22, 23,

26] used convolutional residual networks [2] with spectral normalization [49]. These

models have been empirically successful. However, as we will show in Chapter 3,

these models are not bi-Lipschitz. Using a frequency analysis, we will explain how

they may prevent the feature collapse under the low-frequency domain.

In summary, we still have limited knowledge of the desirable properties of

representations for uncertainty estimation and how to implement them. In this

dissertation, we will also look into this problem and hope to provide new insights.



2. Background 14

2.2 Out-of-distribution Detection

2.2.1 What is Out-of-distribution Detection?

One important and challenging application of uncertainty estimation is out-of-

distribution (OoD) detection. OoD detection has been attracted much attention in

recent years [15, 24, 50, 51] since it is closely related to the safety of machine learning

models. Without effectively detecting OoD data, the predictions of DNNs on them

can often be over-confidently wrong. In this dissertation, we will use OoD detection

as the main application to evaluate the effectiveness of uncertainty estimation.

As an informal definition, OoD detection requires an OoD detector to assign

a scalar score s(x) to the test-time input x and determine whether it is OoD or

in-distribution based on a certain threshold γ. Possible scalar scoring functions

include uncertainty estimate [19, 20], density estimate [52, 53], and some distance

metric [25]. We note here that the definition of OoD is also task-dependent. For

example, given a face recognition dataset, depending on the task, the OoD data

may be faces captured using new types of cameras (in which case we need to rely

on low-level statistics to detect such OoD), or can be non-human faces like dog

faces (in which case we need to rely on high-level semantic features). In other

words, when we decide the OoD detection method (and the representations), we

also determine the OoD data we can detect.

2.2.2 Methods for Out-of-distribution Detection

As mentioned, there are two common choices of scoring functions for OoD detection:

uncertainty or likelihood. When we use (epistemic) uncertainty to detect OoD data,

we are essentially defining OoD as data on which our model is unable to make

a trustworthy prediction p(y|x). For example, this could be data very unlike the

training data (an image of a bicycle, while our training data are human faces),

but also data that could have been part of the training data but with too few

examples for our model to learn to generalize. When we use likelihood to detect

OoD data, we define OoD as data with low density p(x; θ) under an estimated



2. Background 15

distribution of the training data. These data may have some overlap with data

that have high uncertainty. However, in terms of representations, uncertainty relies

on features from a discriminatively trained model since it is directly related to

prediction, while likelihood prefers features that are most prevalent in the training

data and does not limit to any specific types of features.

The problem with likelihood-based methods is that the representations ex-

tracted by common deep generative models consist of a high proportion of low-

level features, which OoD features may also share and thus not ideal for OoD

detection [52, 54]. Many works aim to understand and solve this problem [54–56].

For example, [54] proposes to use likelihood ratio to mitigate the influence of

background information, [56] uses a multi-scale invertible model to extracts high-

level features for likelihood calculation. In general, the empirical performances

of these likelihood-based methods are still inferior to state-of-the-art uncertainty

estimation methods. We believe it would be an interesting future direction to

investigate how to improve these methods further. Nevertheless, in this dissertation,

we will focus on uncertainty-based methods.

2.2.3 Evaluating Out-of-distribution Detection Methods

When evaluating OoD detection performances, since the output of the OoD detector

is a scalar that shows how likely/unlikely a data point is OoD, it is generally

challenging to determine a threshold because of the trade-off between false negatives

(FN) and false positives (FP). Faced with this issue, previous works typically

chose to use threshold-independent metrics such as the Area Under the Receiver

Operating Characteristic curve (AUROC) [57] and the Area Under the Precision-

Recall (AUPR) [58]. The ROC curve plots true positive rate (TPR=TP/(TP+FN))

against false positive rate (FPR=FP/(FP+TN)), and the PR curve plots the

precision (TP/(TP+FP)) and the recall (TP/(TP+FN)) against each other. The

AUPR is sometimes considered more informative when there is a high class (positive

and negative) imbalance [57].



2. Background 16

One challenge of evaluating OoD detection is to choose the proper benchmarks.

Although most OoD methods were proposed to detect “general OoD data”, i.e.,

any data that are unlike the training data, in practice, we can hardly evaluate

the methods in such a way since it is impractical to exhaust all the OoD data.

Instead, almost all the OoD detection methods were evaluated using several OoD

datasets, hoping that different OoD datasets reflect different types of OoD data.

However, there are relatively few works that investigate whether these benchmarks

are good enough for evaluation. We have so little knowledge of these benchmarks

that usually, we can only show empirically that some OoD benchmarks are more

“difficult” than others.

Recently, [45] evaluated their OoD detection method using a spectrum of OoD

datasets with different similarities to the training data. The similarity of datasets

were calculated by first training a classifier that simultaneously classify the inliers

and outliers and then averaging the softmax probability in the in-distribution

classes of OoD data:

DCin (Dtest ) = log
 1
|Dtest |

∑
x∈Dtest

∑
k∈Cin

p̂(ŷ = k | x)
 .

Evaluating a spectrum of OoD datasets is conceptually more meaningful and

exhaustive than using only a few OoD datasets. However, we point out that

the dataset distance should not only be limited to the classification ambiguity.

Depending on the application, we may care about other types of distances. For

example, the background information may not be helpful for classification. However,

we may want to detect OoD data with new backgrounds during test time (since these

data may result in over-confidently wrong predictions due to spurious correlation [8]).

Therefore, besides the spectrum of OoD datasets with different classification

ambiguity (or similarity in discriminative features), we should also evaluate OoD

detection methods along other spectrums, e.g., datasets with different similarities

in non-discriminative features, to have a full understanding of our OoD detection

methods and the representations we use.



3
A Frequency Analysis of the Bi-Lipschitz
Regularization for Convolutional ResNets

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Problems of Current Implementation for Bi-Lipschitz

Regularization . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 A Frequency Analysis of Residual Networks with Bi-

Lipschitz Regularization . . . . . . . . . . . . . . . . . . 20
3.3.1 Background: Downsampling in Convolutional Networks

from a Frequency Perspective . . . . . . . . . . . . . . . 20
3.3.2 Residual Networks and the Frequency Content of Images 22

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Introduction

Modern out-of-distribution detection methods use the representations extracted

by deep neural networks to perform uncertainty or density estimation. However,

it is shown that standard neural networks can learn a function that maps the

out-of-distribution data close to the training data in the feature space since the

learned function is unconstrained [21, 26]. See Figure 1.2 for an example. This

phenomenon is called “feature collapse”.

17



3. A Frequency Analysis of the Bi-Lipschitz Regularization for Convolutional
ResNets 18

A recent line of work proposed to resolve this problem by introducing distance-

awareness into residual neural networks by enforcing the learned function to be

bi-Lipschitz [22, 26]. The idea of the bi-Lipschitz constraint is to bound the distortion

of the learned representations from the input data and thus encouraging the learned

function to map the OoD data away from the training data. Specifically, if our

function mapping has the form f(x) = x + g(x) and spectral normalization [49]

is applied to g such that its bi-Lipschitz constant is smaller than 1, then f is

bi-Lipschitz [59], that is,

∃ L1, L2, s.t. L1||x− y|| ≤ ||f(x)− f(y)|| ≤ L2||x− y||,∀x, y. (3.1)

By definition, a bi-Lipschitz function has a lower bound on the feature distance

between two distinct data points. Therefore, points sufficiently far apart in

input space are guaranteed to be mapped far from each other, preventing feature

collapse entirely.

However, two departures from the theories are made in current implementations

of the residual networks with spectral normalization. First, despite having a bounded

Lipschitz constant on some of the operations in the residual skipping, the overall

learned function is still not bi-Lipschitz due to the use of dimension-reduction

(downsampling) operations. Specifically, the input space changes that lie in the

null space of the dimension-reduction operations will result in no changes in the

features1, violating the lower bound of bi-Lipschitz constraint. Moreover, in the

current implementations, the spectral coefficient is always set to be larger than 1

for training stability [22, 26]. However, to prove the lower bound of the bi-Lipschitz

of the whole residual block, it is required that the bi-Lipschitz constant of the

skip connection, i.e., the spectral coefficient, is smaller than 1. These violations

leave the effectiveness of current models unexplained: if the learned function is

not bi-Lipschitz, what are alternative reasons for residual networks’ empirical

success with spectral normalization?
1In fact, as we will discuss in Section 3.3.1, the dimension-reduction operations can be thought

of as a dimension-preserving operation followed by an image decimation step, where we keep every
nth sample from the input. So the input changes not in every nth sample will not influence the
outputs.



3. A Frequency Analysis of the Bi-Lipschitz Regularization for Convolutional
ResNets 19

In Section 3.3, we answer the above question using a frequency analysis of

the model. The main theorem states that residual blocks must preserve the

distance between low pass filtered versions of their inputs under some relatively

mild conditions. Hence, even though the learned function is not bi-Lipschitz for

the full image, it can still be distance-aware, thus preventing feature collapse on

the low-frequency domain of the image.

Finally, we verify these theoretical claims empirically (Section 3.4). We find

that even if the mathematical conditions for our main theorems are violated,

the conclusion of the theorem still holds in most cases. This indicates that our

mathematical conditions can be further relaxed. We then discuss the limitations

of our results and implications for future work.

Individual Contribution: This work is part of a paper submitted to NeurIPS

2021. My contribution includes a lemma in the proof of the main theorem and

all the experiments presented in this chapter.

3.2 Problems of Current Implementation for Bi-
Lipschitz Regularization

Current implementations of bi-Lipschitz constraints mainly use the spectral nor-

malization scheme with convolutional residual network architecture. Spectral

normalization enforces the weight matrices to have a spectral norm, i.e., the largest

singular value, less than 1, so that for the corresponding nonlinear residual block

g(x) = σ(Wx+ b), we have Lip(g) < 1. We follow the method in [59] to perform

spectral normalization: at every training step, we estimate the spectral norm

σ ≈ ||W ||2 using the power iteration method [60], and then normalize the weights as:

Wl =
c ∗Wl/σ̂ if c < σ̂

Wl otherwise
,

where c > 0 is the spectral coefficient used to adjust the spectral norm upper bound

on ||W ||2 so that ||W ||2 ≤ c (note if ||W ||2 < 1, Lip(g) < 1).

As we point out in the introduction, there are two problems with current

implementations that make the learned function not bi-Lipschitz anymore. The



3. A Frequency Analysis of the Bi-Lipschitz Regularization for Convolutional
ResNets 20

first is the use of dimension-reduction operations, which theoretically cannot be

bi-Lipschitz. As a simple example, when f is a linear function, the inputs in the

null space of f will be mapped to the same output, which breaks the lower bound

bi-Lipschitzness. In fact, bi-Lipschitz mappings have to be dimension-preserving:

Theorem 1. Let f be a function from Rn to Rm, with m < n. Then f is not

bi-Lipschitz.

In addition, current models also set the spectral coefficient to be larger than 1 for

training speed and stability. This also breaks the requirement for proving the lower

bound of the bi-Lipschitzness. This can be seen directly from the following inequality:

‖x− x′‖ ≤ ‖x− x′ − (f(x)− f (x′)) + (f(x)− f (x′))‖

≤ ‖(f (x′)− x′)− (f(x)− x)‖+ ‖f(x)− f (x′)‖

≤ ‖g (x′)− g(x)‖+ ‖f(x)− f (x′)‖

≤ α ‖x′ − x‖+ ‖f(x)− f (x′)‖ ,

(3.2)

where fl(x)) = x + gl(x)) and Lip(gl) ≤ α. The lower bound of bi-Lipschitz

constraint of fl, (1 − α) ‖x− x′‖ ≤ ‖f(x)− f (x′)‖, only has effect when α < 1.

However, we note here that this requirement is only a sufficient condition for the

lower bound of bi-Lipschitz to hold. In practice, it is still possible that without

this constraint, the lower bound still holds.

We will first investigate the downsampling operations from a frequency perspec-

tive in Section 3.3 and empirically investigate the effect of relaxing the spectral

coefficient condition in Section 3.4.

3.3 A Frequency Analysis of Residual Networks
with Bi-Lipschitz Regularization

3.3.1 Background: Downsampling in Convolutional Net-
works from a Frequency Perspective

In this section, we introduce the background for understanding the downsampling

operations in convolutional networks. In signal processing, we have two well-known



3. A Frequency Analysis of the Bi-Lipschitz Regularization for Convolutional
ResNets 21

(a) (b)

Figure 3.1: An example of aliasing between two Fourier modes. The left images in (a)
and (b) are two different Fourier basis functions: (a) is a Fourier basis function above the
Nyquist rate, (b) is a basis function below the Nyquist rate. The right images in (a) and
(b) are the decimation (by a factor 2) results of the corresponding left images, and we
find them to be indistinguishable. Figure is taken from [61].

facts about the sampling frequency. The first is the Nyquist-Shannon sampling

theorem which states that if a signal sampled at frequency us contains no frequency

contents above the Nyquist frequency us/2, then it can be reconstructed exactly [62].

On the other hand, if a signal sampled at frequency us contains frequency contents

above the Nyquist frequency us/2, these contents will be indistinguishable from a

lower-frequency component. This is called “aliasing”. For example, the Stroboscopic

effect, that is, wheels in videos sometimes appear to be rotating differently from

its true rotation, is due to the frame rate not meeting the Nyquist frequency [63].

As we will see, aliasing closely connects with the feature collapse: it can help

us describe feature collapse in the high-frequency contents. In Figure 3.1, we

provide another example.

Aliasing is undesirable because we do not want low-frequency contents to be

contaminated by aliased signals. The classical way to resolve this is to anti-

alias by low-pass filtering the signal [64], i.e., remove the high-frequency contents

before downsampling. In [65], the authors extended this idea to convolutional

networks by combining an anti-aliasing filter with the downsampling operation.

This can make convolutional networks achieve shift-invariance and much better

performance. We will keep the same practice to perform downsampling with

anti-aliasing filtering in this chapter.

As noted by [65], the downsampling operations in convolutional networks -

including average pooling, strided convolutions, and max pooling - can be thought



3. A Frequency Analysis of the Bi-Lipschitz Regularization for Convolutional
ResNets 22

Figure 3.2: Common downsampling operations can be better anti-aliased using a
combination of a dimension-preserving operation and a image decimation operation with
anti-aliasing filter (i.e., BlurPool). See [65] for more details.

of as a dimension preserving operation followed by an image decimation step,

where we keep every nth sample from the input. See Figure 3.2. For example,

strided convolution is equivalent to a standard convolution followed by an image

decimation step. Using the previous theories, we know that the sufficient condition

for a downsampling operation to produce no feature collapse (aliasing). If we have

two signals that differ in their contents below the Nyquist frequency, they will

still be distinguishable after the operation since their low-frequency contents will

be preserved. In other words, the feature collapse induced by the downsampling

operations can only exist in high-frequency contents since they are removed before

decimation by the anti-aliasing filtering.

3.3.2 Residual Networks and the Frequency Content of Im-
ages

As discussed above, all downsampling operations in ResNets can be understood

as dimension-preserving operations followed by decimation. When combined with

anti-aliasing, the frequencies above the Nyquist frequency will be removed after

downsampling, and those below will be unaffected. Therefore, downsampling

operations will preserve the distances in the low-frequency domain. In this section,

we extend this distance preserving property to the convolutional ResNets. To

this end, we need to understand how other components of a convolutional ResNet

influence the frequency contents of an image.

To start with, a convolutional ResNet consists of identity mappings, additions,

convolutions, nonlinearities (ReLUs), and batch normalizations. The identity



3. A Frequency Analysis of the Bi-Lipschitz Regularization for Convolutional
ResNets 23

mapping does not affect the frequency contents of an image. The pointwise addition

adds the frequency content of two images. The batch normalization does not change

the relative scale of the frequency since it only multiplies each channel by a scalar

and adds a bias. From the convolution theorem [64], we know that convolutions act

in the frequency domain as pointwise multiplication of the frequency components of

the input signal with the corresponding frequency components of the convolution

kernel. Hence, it will only change the scale of each frequency component, and

when we apply spectral normalization, we will see a contraction on each frequency

band separately. Finally, for the ReLU nonlinearity, we can show that it also

acts as a convolution in the frequency domain. To see this, let m = I[x > 0] be

the binary mask on the locations in the image x when ReLU is activated. Then

ReLU(x) = x ·m(x). By the convolution theorem, the action of ReLU on X (the

Fourier transform of x) will be a convolution of X with the Fourier transform M(x)

of the binary mask m(x), i.e., ReLU(X) = M(X) ∗ X (∗ denotes convolution).

Using this understanding, we can show that ReLU acts as a contraction on the

low-frequency component Xu of its input (see proof in [61]).

Lemma 1. Let Hu be a low-pass filter that removes all frequencies in a signal

above the cutoff frequency u, let x, y be images, and let v = x− y. Assume that the

difference image, v, is dominated by frequencies below a cutoff frequency u2. Then

||Hu(ReLU(x)− ReLU(y))|| < ||Hu(x)−Hu(y)||.

Now that we have understood all the components of a convolutional ResNet,

we can reach our main theorem, which states that a residual block will preserve

the low-frequency distances:

Theorem 2. Let f = x+ g(x) be a convolutional residual block (i.e g is a series

of convolutions, batch normalisation and ReLUs), and assume that g is regularised

to be contraction (Lip(g) < 1), and that the conditions of Lemma 1 hold on the

input to the ReLU (i.e the difference image x− y is low-frequency dominant). Then,
2The domination is defined as the following: Let f and g be (normalized) measures. An

interval of length L starting at x is a ‘dominant’ interval in f when if
∫ x+L

x
f(t)dt = C, then∫ y+L

y
f(t)dt ≤ C ∀y.



3. A Frequency Analysis of the Bi-Lipschitz Regularization for Convolutional
ResNets 24

the low-passed distances between the output are lower-bounded by the low-passed

distances on the input, that is L||Hu(x) − Hu(y)|| ≤ ||Hu(f(x)) − Hu(f(y))|| for

some constant L > 0.

We can easily extend this result to the whole network – if Lip(f1) = L1 and

Lip(f2) = L2, then Lip(f1 ◦ f2) = L1L2. Since the theorem provides a lower bound

for the low-frequency distances, it guarantees that we will not see feature collapse

in the low-frequency contents when the conditions of the theorem are satisfied 3.

This provides a theoretical explanation of the strong empirical OoD detection

performance of the convolutional ResNets with downsampling operations.

3.4 Experiments

In this section, we conduct empirical experiments to investigate further the reasons

for the success of current spectral normalized ResNets. There are three key questions

we want to answer: 1) Does the condition of Lemma 1 hold? That is, are the

images and intermediate feature maps low-frequency dominant? 2) Does the

conclusion of Theorem 2 hold? From the proof in [61], we know that theoretically

the conclusion holds because the residual block is a contraction on the low-frequency

contents, i.e., ||f(Hu(xi))− f(Hu(xj))|| < ||Hu(x)−Hu(y)||. So we can check the

contraction as a verification of the lower bound conclusion in our experiments. 3)

Whether we can find violations of the theorem when the Lipschitz condition is

relaxed? That is, when the spectral coefficient is larger than 1, will we still see

a contraction in the low-frequency domain? This is motivated by how previous

works performed the spectral normalization [22, 26]. While in the proof, we assume

the convolutions are strict contractions (Lip(g) < 1) since it is only a sufficient

condition, it is interesting to find out whether breaking such condition would result

in violations of the theorem empirically.

In our experiments, we train Wide ResNets [66] on MNIST [67], FashionMNIST

[68] and CIFAR10 [69]. We will answer the previous three questions by checking
3Note the low-frequency dominance condition is not unreasonable for image inputs. As we can

see from Table 3.1 and Table 3.2, the natural images are indeed low-frequency dominant.



3. A Frequency Analysis of the Bi-Lipschitz Regularization for Convolutional
ResNets 25

Figure 3.3: Evolution of the value of the theorem check (i.e., proportion of the data
that satisfy the theorem) during training for all the blocks of a Wide ResNet trained
on CIFAR10. Lines are colored according to the values of the spectral normalization
coefficient (Lip(g)). As can be seen, while there are violations of the theorem during
training, all blocks satisfy the conclusion of Theorem 2 at convergence. This indicates
that while a larger spectral coefficient may influence the training trajectory, it may not
degrade a spectral normalized ResNet’s low-frequency contraction property. The blocks
are shown in order from left to right and top to bottom. We plot the mean and standard
error across five seeds.

on data from these datasets and the intermediate feature maps of the residual

network. For the domination condition of an image, we can numerically check on its

Fourier transform. For the contraction on the low-frequency contents, we consider

a mini-batch of data {xi | i ∈ 1, ...,m} , compare the pair-wise distances before

and after the residual block, and calculate the proportion of the batch for which

||g(Hu(xi))− g(Hu(xj))|| < ||Hu(xi)−Hu(xj)||. Note that since this check is only

performed on a particular dataset, it does not necessarily prove that the theorem

holds for all possible inputs. However, if we cannot find violations on natural image

datasets, this does suggest that low-frequency distance is preserved between natural

images. The results are shown in Table 3.1 and Table 3.2.

As we can see, the condition of Lemma 1 (low-frequency domination) does not

hold in quite a few intermediate feature maps. Despite this violation of condition,



3. A Frequency Analysis of the Bi-Lipschitz Regularization for Convolutional
ResNets 26

Table 3.1: Results of empirically checking the conditions of Lemma 1 (low-frequency
domination) and the conclusion of Theorem 2 (low-frequency contraction) on MNIST and
FashionMNIST. Models with different spectral coefficients are compared. Numbers are
the proportion of the dataset that the condition or the theorem holds true (1 means no
violations were found, 0.5 means only half of the inputs meeted the condition/theorem,
etc.) We report means and standard error over 25 seeds for these datasets. We use a
WideResNet with depth 10 and widen factor of 1 for these datasets.

Dataset Lip(g) x f1(x) f2(x) f3(x) f4(x)

Lemma 1

MNIST

0.9 0.80± 0.00 0.18± 0.04 0.31± 0.03 0.63± 0.02 0.44± 0.02
0.95 0.80± 0.00 0.18± 0.04 0.30± 0.05 0.62± 0.04 0.45± 0.02
0.99 0.80± 0.00 0.20± 0.03 0.31± 0.03 0.63± 0.02 0.45± 0.01
3.0 0.80± 0.00 0.23± 0.02 0.43± 0.04 0.71± 0.01 0.47± 0.02
6.0 0.80± 0.00 0.22± 0.03 0.42± 0.03 0.71± 0.01 0.48± 0.02
9.0 0.80± 0.00 0.22± 0.04 0.41± 0.03 0.71± 0.01 0.48± 0.01
no 0.80± 0.00 0.24± 0.02 0.39± 0.05 0.70± 0.01 0.46± 0.02

FashionMNIST

0.9 0.86± 0.00 0.18± 0.04 0.24± 0.04 0.48± 0.04 0.47± 0.03
0.95 0.86± 0.00 0.18± 0.04 0.25± 0.02 0.48± 0.03 0.46± 0.01
0.99 0.86± 0.00 0.18± 0.05 0.25± 0.04 0.51± 0.02 0.48± 0.01
3.0 0.86± 0.00 0.24± 0.03 0.28± 0.04 0.53± 0.04 0.47± 0.02
6.0 0.86± 0.00 0.24± 0.03 0.28± 0.02 0.53± 0.02 0.47± 0.02
9.0 0.86± 0.00 0.25± 0.01 0.28± 0.04 0.54± 0.04 0.47± 0.01
no 0.86± 0.00 0.24± 0.03 0.25± 0.03 0.53± 0.03 0.47± 0.01

Theorem 2

MNIST

0.9 n/a 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00
0.95 n/a 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00
0.99 n/a 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00
3.0 n/a 0.69± 0.31 0.96± 0.11 1.00± 0.00 1.00± 0.00
6.0 n/a 0.55± 0.26 0.98± 0.05 1.00± 0.00 1.00± 0.00
9.0 n/a 0.61± 0.28 0.99± 0.03 1.00± 0.00 1.00± 0.00
no n/a 0.60± 0.30 0.99± 0.02 1.00± 0.00 1.00± 0.00

FashionMNIST

0.9 n/a 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00
0.95 n/a 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00
0.99 n/a 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00
3.0 n/a 0.98± 0.04 1.00± 0.00 1.00± 0.00 1.00± 0.00
6.0 n/a 0.95± 0.11 0.92± 0.04 1.00± 0.00 1.00± 0.00
9.0 n/a 1.00± 0.01 0.85± 0.12 1.00± 0.00 1.00± 0.00
no n/a 1.00± 0.00 0.86± 0.07 1.00± 0.00 1.00± 0.00

Theorem 2 (low-frequency contraction) holds for all the models whose Lipschitz

constant of the residual skipping is constrained to be smaller than 1. This suggests

that the conditions may be relaxed, and the theorem may hold in more cases.

As for the influence of the spectral coefficient, we note that on MNIST and

FashionMNIST, we can observe some violations of the theorem. This is expected

since the Lipschitz condition plays a crucial role in proving the low-frequency

contraction theorem. However, on CIFAR10 (and deeper layers on MNIST and

FashionMNIST), we also observe that the low-frequency contraction holds even

when the spectral coefficient exceeds one by a large margin. In Figure 3.3, we



3. A Frequency Analysis of the Bi-Lipschitz Regularization for Convolutional
ResNets 27

Table 3.2: Results of empirically checking the conditions of Lemma 1 (low-frequency
domination) and the conclusion of Theorem 2 (low-frequency contraction) on CIFAR10
- see the caption of Table 3.1 for a more detailed description. We report means and
standard errors over 5 seeds for this dataset. We use a WideResNet with a depth of 28
and widen factor of 10.

Lip(g) x f1(x) f2(x) f3(x) f4(x) f5(x) f6(x)

Lemma 1

0.9 0.66± 0.00 0.53± 0.11 0.56± 0.20 0.41± 0.13 0.41± 0.13 0.41± 0.12 0.67± 0.01
0.95 0.66± 0.00 0.53± 0.03 0.41± 0.19 0.35± 0.07 0.37± 0.06 0.39± 0.04 0.67± 0.06
0.99 0.66± 0.00 0.52± 0.03 0.35± 0.17 0.30± 0.05 0.30± 0.04 0.33± 0.04 0.65± 0.01
3.0 0.66± 0.00 0.54± 0.03 0.26± 0.02 0.19± 0.03 0.20± 0.02 0.26± 0.02 0.64± 0.01
6.0 0.66± 0.00 0.94± 0.00 0.36± 0.03 0.28± 0.09 0.21± 0.06 0.25± 0.03 0.62± 0.02
9.0 0.66± 0.00 0.88± 0.13 0.43± 0.04 0.27± 0.05 0.20± 0.04 0.18± 0.02 0.60± 0.01
no 0.66± 0.00 0.92± 0.03 0.41± 0.04 0.24± 0.07 0.17± 0.02 0.18± 0.02 0.60± 0.01
Lip(g) f7(x) f8(x) f9(x) f10(x) f11(x) f12(x) f13(x)
0.9 0.69± 0.03 0.71± 0.03 0.78± 0.04 0.85± 0.08 0.77± 0.01 0.78± 0.03 0.94± 0.01
0.95 0.67± 0.03 0.69± 0.02 0.77± 0.05 0.81± 0.09 0.76± 0.02 0.76± 0.03 0.95± 0.02
0.99 0.67± 0.01 0.69± 0.01 0.75± 0.04 0.81± 0.08 0.77± 0.01 0.78± 0.02 0.93± 0.02
3.0 0.63± 0.02 0.66± 0.02 0.72± 0.01 0.76± 0.02 0.84± 0.02 0.81± 0.04 0.83± 0.03
6.0 0.63± 0.01 0.65± 0.01 0.73± 0.02 0.85± 0.07 0.77± 0.01 0.76± 0.05 0.82± 0.04
9.0 0.63± 0.01 0.66± 0.02 0.69± 0.01 0.69± 0.06 0.76± 0.01 0.71± 0.05 0.85± 0.02
no 0.63± 0.01 0.68± 0.02 0.70± 0.01 0.75± 0.10 0.74± 0.03 0.81± 0.01 0.74± 0.02

Lip(g) x f1(x) f2(x) f3(x) f4(x) f5(x) f6(x)

Theorem 1

0.9 \ 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00
0.95 \ 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00
0.99 \ 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00
3.0 \ 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00
6.0 \ 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00
9.0 \ 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00
no \ 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00
Lip(g) f7(x) f8(x) f9(x) f10(x) f11(x) f12(x) f13(x)
0.9 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00
0.95 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00
0.99 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00
3.0 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00
6.0 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00
9.0 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00
no 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00

plot the evolution of the theorem check quantities during training. It is intriguing

to see that although the theorem can be heavily violated during training, after

convergence, it holds for all choices of spectral coefficients across all the blocks.

We do not have a theoretical explanation for why this should happen. However,

this result is in agreement with the previous empirical studies, which showed

that distance-aware learning with spectral normalization coefficients above one

could perform well [21–23, 26].



3. A Frequency Analysis of the Bi-Lipschitz Regularization for Convolutional
ResNets 28

3.5 Discussion

In this work, we investigate an intriguing phenomenon in current literature – despite

an apparent violation of the theoretical motivation to use ResNets with spectral

normalization, these models perform exceptionally well for uncertainty estima-

tion and out-of-distribution detection. We have demonstrated that, under mild

assumptions, residual networks will be approximately distance preserving on the low-

frequency contents of their input. Therefore, feature collapse on the low-frequency

domain can still be prevented. In our experiments, we show that this theorem

holds on natural image datasets even when the assumptions of our mathematical

proof are relaxed, for instance, by training with a spectral normalization coefficient

above 1. Our work provides a new perspective to understand the effect of existing

residual architecture and normalization schemes in the context of representation

learning for deterministic uncertainty estimation. We also hope that our work could

provide insights on developing new models that can prevent feature collapse, e.g.,

by enforcing the low-frequency dominance more explicitly.



All models are wrong, but some models are useful.

— George Box [70]

4
Decomposing Representations for

Out-of-distribution Detection

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.1 Representation-based OoD Detection . . . . . . . . . . . 31
4.2.2 Mahalanobis Distance for OoD Detection . . . . . . . . 32

4.3 Motivating Observations . . . . . . . . . . . . . . . . . . 34
4.4 Decomposing Representations . . . . . . . . . . . . . . . 37

4.4.1 New Scoring Function Based on the Decomposition . . . 38
4.4.2 Dataset Distance Metric Based on Decomposition . . . 39

4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5.1 OoD Detection on Simulated Data . . . . . . . . . . . . 39
4.5.2 OoD Detection on Image Datasets . . . . . . . . . . . . 40
4.5.3 Interpreting Uncertainty . . . . . . . . . . . . . . . . . . 43

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Introduction

Deep neural networks (DNNs) have achieved remarkable progress during the last

decade. However, they assume that test data come from the same distribution as

the training data. However, in real applications, it is inevitable for a model to

make predictions on Out-of-Distribution (OoD) data instead of in-distribution data

29



4. Decomposing Representations for Out-of-distribution Detection 30

on which the model is trained, leading to failures of DNNs [47, 71]. When DNNs

are part of a decision-making system in safety-critical tasks, the failures of DNNs

can propagate through the system and result in fatal errors [11]. Therefore, it is

crucial to detect such OoD data and defer them to human experts instead of making

predictions. In recent years, OoD detection, or anomaly detection, has become a

vital component of the machine learning system in many high-risk applications

like autonomous driving and medical diagnosis [72, 73].

As introduced in Chapter 2, OoD detection requires an OoD detector to assign

a scalar score s(x) to the test-time input x and determine whether it is OoD or

in-distribution based on a certain threshold γ. To improve the quality of the

scoring function s, modern OoD detection methods rely on the rich representations

of deep neural networks. However, even if the representations are rich enough,

we can still obtain degraded performance because the redundant representations

may influence or dominate the scoring function. For example, deep generative

models are known to be able to learn a rich representation of the inputs [59, 74].

However, the work by [52] shows that these models give higher likelihoods to OoD

data than in-distribution data. In many following works [54, 56], it is shown that

this is because the representations of deep generative models are dominated by

low-level features (background features) that are also shared by many images in

the chosen OoD datasets. In this case, high-level features are more desirable for

OoD detection (among images). In practice, depending on the application, the

ideal OoD detection may mainly depend on another type of feature, so we need

more understanding of the representations and the target OoD detection tasks.

We include more concrete examples of this issue in Section 4.3. In this work, we

propose decomposing the representations and using the decomposed features to

explain and solve the problem mentioned above.

While there are many choices of decomposition, in this work, we specifically

choose to investigate the discriminative and non-discriminative features, that is,

features that are related and unrelated to classification (prediction). For example,

in an object classification task, the shapes of objects may be discriminative features,



4. Decomposing Representations for Out-of-distribution Detection 31

while the background of the images may be non-discriminative features1. Based on

the decomposition, we propose a simple algorithm to integrate the OoD detection

scores calculated on each kind of feature and a dataset distance metric to measure

the difference of in-distribution and OoD data. We show that our decomposition can

improve the OoD detection performances and the interpretability of the uncertainty

estimates through experiments.

In summary, in this chapter, we make the following contributions:

• Make the observation that state-of-the-art density estimation methods which

are successful on some OoD detection benchmarks can fail (or be suboptimal)

on others (Section 4.3);

• Propose the decomposition of features to solve the problem mentioned above,

and design an algorithm and a dataset distance metric based on the decompo-

sition (Section 4.4);

• Improve both OoD detection performances and interpretability of uncertainty

estimates using the decomposition (Section 4.5).

4.2 Background

4.2.1 Representation-based OoD Detection

As introduced above, the task of OoD detection depends on a scoring function

which can be either uncertainty or density estimation. In recent years, most modern

approaches make use of the rich representations learned by deep neural networks

(DNN) and perform the uncertainty or density estimation on the activations in an

intermediate feature space of a DNN classifier [21, 22, 24, 25]. There are mainly

two ways to improve the OoD detection performances: improve the density (or

uncertainty) estimator, or adapt the training strategy to learn better representations.

To improve representation learning for OoD detection, the key is to include more
1In practice, we acknowledge that the learned discriminative features may not be consistent

with human perception. For example, in [75], it is shown that high-frequency features that are
imperceptible to human can be highly predictive, and thus discriminative.



4. Decomposing Representations for Out-of-distribution Detection 32

features that can distinguish in-distribution and OoD datasets. Recent efforts

include using extra OoD training datasets [46] and using self-supervised learning or

contrastive learning to learn richer representations [44, 45]. For the approximated

density estimator, since high-dimensional density estimation is notoriously difficult,

most approaches propose a distance metric as an alternative. One of the most

successful methods is the Mahalanobis distance [24] which models the in-distribution

as a class-conditional multivariate Gaussian distribution using training samples and

for each test sample, calculate the maximum of log likelihoods across classes as the

final score for OoD detection. Other approaches include Feature Space Singularity

Distance (FSSD) which calculates a Euclidean distance from the test sample to an

approximate OoD center [25, 76] and using Gram matrices from multiple feature

maps to capture abnormal activity patterns [27].

The evaluation of OoD detection methods requires the use of OoD datasets, which

is a task-dependent design choice. To explore the difference of OoD datasets, recent

works propose the concept of “near OoD” and “far OoD” [43, 45]. “Near OoD”refers

to data that are semantically similar to the in-distribution (e.g., shape, pose), while

“far OoD” are more unrelated (e.g., brightness). Our work is an addition to this line

of work. We show that the differences in OoD datasets can greatly influence the

performance of OoD detection methods (see Section 4.3), and we can achieve optimal

performance by integrating the discriminative and non-discriminative features which

are responsible for detecting “near” and “far” OoD data respectively.

4.2.2 Mahalanobis Distance for OoD Detection

Mahalanobis distance [24] has been very successful and a common component in

many representation-based OoD detection methods. Since our work is based on the

Mahalanobis distance method and its variants to explain the ideas, it is beneficial

for us to have a more detailed introduction to the method.

We first distinguish the general Mahalanobis distance and the Mahalanobis

distance method for OoD detection. In its general form, Mahalanobis distance



4. Decomposing Representations for Out-of-distribution Detection 33

calculates the distance between a point x and a distribution D. It is a multi-

dimensional generalization of the idea of measuring how many standard deviations

away x is from the mean of D. Given the mean µ and the covariance matrix Σ

of D, the Mahalanobis distance of x is:

M(x) =
√

(x− µ)Σ−1(x− µ). (4.1)

The Mahalanobis distance method for OoD detection first models the distribution of

the intermediate features as a class-conditional multivariate Gaussian distribution

with a tied covariance matrix. Then it calculates class-wise Mahalanobis distance

of a new feature z = f(x) using this distribution and uses the maximum of the

negative squared Mahalanobis distance as its score:

M(x) = max
c
−(f(x)− µ̂c)T Σ̂−1(f(x)− µ̂c), (4.2)

where

Σ̂ = 1
N

C∑
c=1

∑
i:yi=c

(f(xi)− µ̂c) (f(xi)− µ̂c)
T , µ̂c =

∑
i:yi=c

f(xi).

Equivalently, we can also calculate the maximum of the log likelihood2 of the class-

conditional Gaussian distribution p(z|y = c) ∼ N (µ̂c,Σ). As a natural extension,

we can also model the distribution using different covariance matrices for each class.

The maximum of the log likelihood across classes3 then has the form:

M(z) = max
c

[
− (z− µ̂c)

T Σ̂−1
c (z− µ̂c)− log

(
(2π)d det Σ̂c

)]
, (4.3)

where

Σ̂c = 1
|{i : yi = c}|

∑
i:yi=c

(f(xi)− µ̂c) (f(xi)− µ̂c)
T , µ̂c =

∑
i:yi=c

f(xi).

Since this new modeling has higher flexibility than the original model and may

have better uncertainty estimation when there are enough data, it is also widely

used in recent works [26, 45]. These two modeling approaches correspond to the
2Alternatively, we can also calculate the sum of the log likelihoods across classes, which is the

likelihood under the modeled distribution p(z) =
∑

c−(f(x)− µ̂c)T Σ̂−1(f(x)− µ̂c). Empirically,
there are no big difference between these two approaches.

3Similarly, we can also calculate the sum of the log likelihoods as in the previous case.



4. Decomposing Representations for Out-of-distribution Detection 34

Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA)

of Gaussian discriminant analysis (GDA), where we fit a generative model for

classification using the class-conditional Gaussian distribution on the data [77].

Therefore, we will call the original Mahalanobis distance method as Maha and

the above extension as QDA-Maha.

Other variants of Mahalanobis distance were proposed to improve on some

specific tasks. Notably, marginal Mahalanobis distance (Marginal Maha) [78] was

proposed to show that principal components with small explained variance contribute

a lot to the performance of Maha. These principal components were shown to

be weakly related to classification. Their method thus calculates the mean and

covariance without using class-relevant information. Specifically, in Equation (4.2),

Σ = 1
N

N∑
i=1

(f(xi)− µ) (f(xi)− µ)T , µc = µ = 1
N

N∑
i=1

f(xi).

Empirically, it was reported that the Marginal Maha could already achieve com-

parable perfomrance to the original Maha method on many “far OOD” datasets.

Another variant is called Relative Mahalanobis distance (Relative Maha) [43].

Just the opposite of the Marginal Maha method, Relative Maha aims to mitigate

the influence of the class-irrelevant information by calculating the distance as

Mrel(x) = M(x) −Mmarg(x) where Mrel and Mmarg refers to Relative Maha and

Marginal Maha, respectively. Empirically, the authors showed the effectiveness of

Relative Maha on many near OOD benchmarks like CIFAR10 vs. CIFAR100.

4.3 Motivating Observations

In this section, we compare the variants of Mahalanobis distances on two OoD

benchmarks: CIFAR10 vs. SVHN and CIFAR10 vs. CIFAR100. These are two

widely used benchmarks in OoD detection literature [15, 24, 50] and can reflect two

types of different OoD: SVHN consist of street numbers and are highly different

from the CIFAR10, which contains objects from 10 classes; while CIFAR100 are

collected using the same pipeline as CIFAR10 but contains objects from 100 other

classes [69]. We train a Wide ResNet 28-10 [66] as [43] and calculate distances on



4. Decomposing Representations for Out-of-distribution Detection 35

the penultimate layer. The methods to be compared are: Mahalanobis distance

(Maha), Marginal Mahalanobis distance (Marginal Maha), and Relative Mahalanobis

distance (Relative Maha). As we can see, the key difference between the three

variants is how the class-relevant information is (not) used. Maha is a density

estimation that uses class-relevant information, Marginal Maha is class-independent,

and Relative Maha is equivalent to computing a likelihood ratio where the an

approximate background likelihood log pmarg is subtracted from the class-dependent

likelihood log pmaha. So in terms of the degree of class-relevance, we have: Relative

Maha > Maha > Marginal Maha.

The OoD detection results can be found in Table 4.1. We can see that on

CIFAR10 vs. SVHN, all the methods can perform relatively well with Maha being

the top. While on CIFAR10 vs. CIFAR100, there is a sharp difference among the

methods: Relative Maha shows significantly better performance than others while

Marginal Maha almost completely mixes the two datasets (AUROC=50% means

random guess). Note that although the compared methods are well-known, none of

them has been tested simultaneously on both benchmarks. Our experiments demon-

strate that none of these methods can beat every other method on both benchmarks.

Considering the difference in the degree of class relevance among the three

methods, we hypothesize that the differences in OoD detection performances can

be attributed to the different desired degrees of class relevance on different OoD

detection benchmarks. To further test this hypothesis, we decompose the features

into discriminative (class-relevant) ones and non-discriminative (class-irrelevant)

ones. In Figure 4.1, we show an analytic 2D example where the discriminative

direction is along the x-axis, and the non-discriminative direction is along the

y-axis. We then consider OoD data along both directions. Since the covariance

matrix on the full feature treats variations in both directions equally, it will have

a circular decision boundary, which is not perfect for detecting either OoD type.

Alternatively, if we use discriminative or non-discriminative features, we can get

the best performance in detecting the corresponding type of OoD data.



4. Decomposing Representations for Out-of-distribution Detection 36

Table 4.1: AUROC (%) comparison of variants of Mahalanobis distance calculated on
features at penultimate layer (pre-logit).

Method CIFAR10 vs SVHN CIFAR10 vs CIFAR100
Maha 97.95 75.75
Marginal Maha 96.06 59.90
Relative Maha 96.28 91.28

6 4 2 0 2 4 6

4

2

0

2

4
class1
class2
ood_n
ood_d

0

1

2

5

10

20

(a) Mahalanobis distance on full
features.
AUROCred = 0.94,
AUROCgreen=0.94.

6 4 2 0 2 4 6

4

2

0

2

4

0

5

20

40

80

(b) Mahalanodis distance on
discriminative features.
AUROCred= 0.98,
AUROCgreen = 0.36.

6 4 2 0 2 4 6

4

2

0

2

4

0

5

20

40

80

(c) Mahalanodis distance on
non-discriminative features.
AUROCgreen = 0.98,
AUROCred = 0.34.

Figure 4.1: A 2D example showing the effect of decomposition. The orange and blue
points are two in-distribution classes, green points are OoD from non-discriminative
directions and red points are OoD from discriminative directions. Contour lines are
colored according to the Mahalanobis distance to the in-distribution points (darker means
higher). We can see that Maha on the full feature weighs on both discriminative and
non-discriminative directions simultaneously (and in our case, equally). This makes Maha
on full features ((a)) suboptimal in detecting OoD data compared to Maha calculated on
either direction only ((b), (c)).

We also conduct a high-dimensional test where features are 128D but only

discriminative in the first ten dimensions. This can be seen as a simulation of the

CIFAR10 representations. Again, we compare the Mahalanobis distance calculated

on the full, discriminative, and non-discriminative features. Since the covariance

matrix of Mahalanobis distance treats each dimension equally, the Mahalanobis

distance calculated on the full feature would be heavily influenced by the variations

of the 118D non-discriminative features. We find Maha achieves 83.95% AUROC

in detecting OoD data along the discriminative directions. However, when using

discriminative features alone, we could detect discriminative features almost perfectly

(near 100% AUROC). See Section 4.5 for details of this experiment.



4. Decomposing Representations for Out-of-distribution Detection 37

4.4 Decomposing Representations

Inspired by our previous observations, we propose decomposing the discriminative

and non-discriminative information from the learned representations. This allows us

to combine and choose “optimal” features based on our understanding of the OoD

detection benchmark and a new perspective to interpret the uncertainty estimation.

Given a learned feature extractor, a straightforward way to perform the decompo-

sition of representations is to perform Principal Component Analysis (PCA) on the

features. Specifically, given the feature matrix of a dataset4 X ∈ Rn×p where n is the

number of inputs, p is the length of a feature (representation), we first compute its

SVD decomposition [79]X = UΣV T , where U ∈ Rn×n,Σ ∈ Rn×p, V ∈ Rp×p. We can

then perform an orthogonal linear transformation on the feature matrix: T = XV .

The columns (coordinates) of T are ordered such that they are uncorrelated, and

the variance over the dataset is decreasing. We call first d columns of T top

principal components (PCs) and the other columns bottom principal components

(PCs) and we can then use them separately as representations for uncertainty

estimation. In this work, d is chosen to be the number of classes in the dataset.

Despite being linear and not using the label information, PCA can usually do a

good job in decomposition since the representations of a discriminatively trained

neural network are usually clustered by classes. Specifically, using the features

from a Wide ResNet 28-10 trained on CIFAR10, when we train logistic regressors

on the top and bottom PCs separately for classification, we can get 95.7% and

24.6% accuracy on the test set, respectively, suggesting that the top PCs have

captured most of the discriminative features.

To fully utilize the label information, we propose a more advanced method to

perform the decomposition. Given a feature extractor f : RM → RD which maps

from inputs to representations, we first perform a transformation of the features

z = f(x) using an invertible function F : RD → RD. Our aim is then to extract

discriminative features zs into the first d dimensions of F (z) and non-discriminative
4Assume we have already subtract the mean of each column of the feature matrix before we

perform the PCA.



4. Decomposing Representations for Out-of-distribution Detection 38

features zn into the other dimensions. As a convenient choice, we set d = C,

i.e., the number of classes of the training dataset. zs then serves as logits for the

classification. We then uses another linear map D : RD → Rd to map zn to a

d−dimensional logits. In this way, we can now use the so-called independence

cross-entropy (iCE) loss [80] to encourage the decomposition of discriminative and

non-discriminative features. The iCE loss is defined as:

min
θ

max
φ
LiCE (θ, φ) =

C∑
i=1
−yi log softmaxFθ(zs)i︸ ︷︷ ︸

=:LsCE(θ)

+
C∑
i=1

yi log softmaxDφ (Fθ(zn))i︸ ︷︷ ︸
=:LnCE(θ,φ)

.

(4.4)

To further understand this loss function, it is worth pointing out that the loss

LnCE can be understood using a variational lower bound on mutual information.

Moreover, it can be proved that the minimization is concerning a lower bound

on I(y; zn), while the maximization aims to tighten the bound [80]. Therefore,

the iCE loss aims to maximize I(y; zs) (first term) and minimize I(y; zn) (second

term) at the same time. Therefore, we call zs the discriminative features and

zn the non-discriminative features5.

4.4.1 New Scoring Function Based on the Decomposition

We can design a simple algorithm based on the decomposition: M ′(z) := λM(zs) +

(1−λ)M(zn), whereM(z) is the original scoring function. The coefficient λ controls

the proportion of the desired mixing proportion of two features. When some

exemplar OoD data is available, we can use them to tune λ. When there are no

available OoD data, we can manually choose λ based on the prior knowledge of

OoD data or set it as 1/2. In our later experiments, if not specified, we set

λ = 1/2 by default.

5Note the “discriminative” and “non-discriminative” terms are just names for the features.
It is possible that the representations of a discriminatively trained neural netowrk only contain
discriminative features. In this case, when we perform the decomposition, the extracted “non-
discriminative” features would be “less-discriminative” features, i.e., features that contribute less
to the classification (prediction) than the “discriminative” features.



4. Decomposing Representations for Out-of-distribution Detection 39

17.5 15.0 12.5 10.0 7.5 5.0 2.5 0.0 2.5
discriminative log likelihood

0

250

500

750

1000

1250

1500

1750

2000 CIFAR10 (in)
SVHN (out)
CIFAR100 (out)

(a)

30 25 20 15 10 5 0
non-discriminative log likelihood

0

500

1000

1500

2000

CIFAR10 (in)
SVHN (out)
CIFAR100 (out)

(b)

Figure 4.2: OoD detection using different features. CIFAR10 is the in-distribution
dataset, and SVHN and CIFAR100 are two different OoD datasets. We can see that when
using non-discriminative features, CIFAR100 is much closer to the in-distribution while
SVHN is much further from the in-distribution.

4.4.2 Dataset Distance Metric Based on Decomposition

We can also design a new dataset distance metric by measuring the difference in

the distributions of OoD scores. The decomposition gives such divergence a clear

meaning: dataset distances in either discriminative or non-discriminative directions.

To make the scores of the two features comparable, we first normalize the

discriminative (dis) and non-discriminative (non-dis) scores of the test data using

the mean and standard deviation of the dis and non-dis scores calculated on the

training data. To reflect the difference between the two distributions of scores

pin(M(z)) and pout(M(z)), the standard practice is to use Kullback–Leibler (KL)

divergence DKL(pin‖pout) = ∑K
k=1 pin,k log pin,k

pout,k
. In our case, since we only have the

samples drawn from the two distributions pin, pout, we use an estimator of the KL-

divergence based on k-nearst-neighbor distances [81]. We show the dataset distance

in the extracted discriminative and non-discriminative directions in Table 4.2.

4.5 Experiments

4.5.1 OoD Detection on Simulated Data

We consider both low-dimensional (2D) simulation and high-dimensional (128D)

simulation. For the low dimensional simulation, we generate two Gaussian distri-



4. Decomposing Representations for Out-of-distribution Detection 40

butions with mean (3,0) and (-3,0) and tied covariance matrix Σ = 0.5I2. The

two OoD distributions are also Gaussian distributions with mean (3,1.4) and (1.6,

0) and the same covariance matrix Σ = 0.3I2. We then use Equation (4.2) to

calculate the Mahalanobis distance on the chosen features (full, discriminative,

non-discriminative). The results in Figure 4.1 show that Maha calculated on the full

features can only reach sub-optimal performance (94% AUROC) compared to on

the decomposed features for the corresponding type of OoD data (98% AUROC).

For the high-dimensional simulation, we generate ten 128D Gaussian distribu-

tions {zc ∼ N (µc,Σ)}10
c=1 with mean µc = 10ec, diagonal covariance matrix Σ = I128.

Here ec is the standard basis. We also consider two types of OoD: (1) OoD along

discriminative directions: z ∼ N (µk,Σ) where µk = 5ek, k ∈ {1, 2, ..., 10}.; (2)

OoD along non-discriminative directions: z ∼ N (µk′ ,Σ) where µk′ = 10ec + 5el,

c ∈ {1, 2, ..., 10}, 11 ≤ l ≤ 128. The remaining process of calculating Mahalanobis

distance is the same as the low-dimensional simulation. When using Mahalanobis

distance on the full feature, the OoD detection performance is 83.95% AUROC.

While we we use Mahalanobis distance on the decomposed features, we can achieve

99.13% AUROC on OoD data along discriminative directions and 84.41% along

non-discriminative directions. This shows that the OoD detection performance

when using the full feature is heavily influenced by the non-discriminative features.

This is similar to the CIFAR10 vs CIFAR100 benchmark (see Table 4.2).

4.5.2 OoD Detection on Image Datasets
Setup

For the experiments on image datasets, we use CIFAR10 [69] as the in-distribution

datasets and SVHN [82], CIFAR100 [69], and the union of the two datasets as three

different benchmarks. This is to demonstrate better how OoD datasets’ differences

influence the OoD detection performances using different methods.

We use WRN-28-10 [66] trained on CIFAR10 as our pretrained model to

extract the penultimate features for different methods. For the decomposition

using iCE loss, the invertible transformation is implemented as a 4-layer invertible



4. Decomposing Representations for Out-of-distribution Detection 41

Table 4.2: AUROC (%) comparison of different methods calculated on features at
penultimate layer (pre-logit).

Method

Datasets
Din = CIFAR10 Din =CIFAR10 Din =CIFAR10
Dout = SVHN Dout =CIFAR100 Dout = SVHN ∪ CIFAR100
ddis = 3.75 ddis = 4.55 ddis = 2.08
dnondis = 4.09 dnondis = 1.15 dnondis = 1.73

Baseline (full feature) 98.31 86.15 92.23
PCA top score 94.59 90.20 92.39
PCA bottom score 98.23 83.77 91.00
PCA top score + bottom score 97.95 89.90 93.92
Discriminative score 94.76 90.37 92.56
Non-discriminative score 98.59 85.63 92.11
Dis score + Non-dis score 98.06 90.12 94.09

residual networks [59] with linear residual function and 0.9 spectral coefficient. The

decomposition takes 3000 iterations using SGD optimizer, and we get 96.12% test

accuracy for discriminative logits and 11.2% test accuracy for non-discriminative

logits. For each method, we repeat the experiments using five differently randomly

initialized models and report the mean.

Main Result

In Table 4.2, we show the comparison of different methods on the three OoD

benchmarks. The scoring function we use is QDA-Maha. However, for other choices

of scoring functions, we also see similar patterns. From Table 4.2, we can see that:

1. Our dataset distance metric is a good indicator of the OoD types and can

explain the AUROC differences. For example, SVHN is far from CIFAR10

in both features and is further in non-discriminative features. So while

using either type of feature can achieve high AUROC for detecting SVHN,

non-discriminative features are slightly better. For CIFAR100, the distance

in discriminative features is much larger than that in non-discriminative

features. So when using discriminative scores to detect CIFAR100, we can

see a considerable performance boost.

2. Discriminative score performs best on discriminative features, and non-

discriminative score performs best on non-discriminative features. Moreover,



4. Decomposing Representations for Out-of-distribution Detection 42

2 3 4 5 6 7 8
discriminative NLL

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

AU
RO

C

SVHN classes

shark

streetcar

Dis
Nondis

(a)

2 4 6 8 10 12
non-discriminative NLL

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

AU
RO

C SVHN classesshark

streetcar

Dis
Nondis

(b)

Figure 4.3: AUROCs of OoD detection using discriminative and non-discriminative
features (y-axis) against the two dataset distances (x-axis). Every two dots with the same
x-axis coordinate belong to the same class in either SVHN or CIFAR100.

the sum of the two scores combines the best of both features, yielding close

to best performances on both benchmarks and best performance on the union

benchmark.

3. PCA is already a reasonably good way for the decomposition. Note that this

conclusion can change if we add the decomposition into the training process

instead of using a discriminatively trained neural network.

To further understand the dataset distances under two different features, in

Figure 4.2, we show the histograms of the two scores (log likelihoods) calculated

on the three datasets. From the histogram, we can see that SVHN is far from

CIFAR10 in both histograms, but the absolute values of non-discriminative log

likelihoods are larger, so they can be easier to detect. For CIFAR100, there is a

sharp difference between two features: the discriminative log likelihoods are more

flat and far from CIFAR100, while the non-discriminative log likelihoods are very

close to CIFAR10. So discriminative scores are a better choice to detect CIFAR100.

These observations are aligned with the AUROC results of OoD detection and

the dataset distances in Table 4.2.



4. Decomposing Representations for Out-of-distribution Detection 43

4.5.3 Interpreting Uncertainty

The dataset distance under different features also provides us with a tool to interpret

the uncertainty estimates. In Figure 4.3, we conduct a class-wise analysis for a fine-

grained understanding of the OoD classes. Specifically, we calculate the AUROC

using discriminative and non-discriminative scores to detect the 110 classes of SVHN

∪ CIFAR100 from CIFAR10 (one class at a time). This gives us two AUROC scores

for each class, dis AUROC and nondis AUROC. We then plot them against the

dataset distance between CIFAR10 and each class. In this way, we can interpret

the OoD detection performances (y-axis) by looking at dataset distances (x-axis).

We highlight three types of OoD: (1) Classes with much higher non-discriminative

distances than discriminative ones, e.g., SVHN classes. For these classes, non-

discriminative features are more suitable for OoD detection. (2) Classes with

small discriminative distances, e.g., streetcar. The small discriminative distances

are usually due to similar categories in CIFAR10, e.g., automobile and truck for

the streetcar. These classes typically also have small non-discriminative distances.

Usually, discriminative distances are still larger, so more suitable for OoD detection.

(3) Classes with large discriminative distances, e.g., shark. These classes typically

also have large non-discriminative distances. The OoD performances using the

two kinds of distances are usually similar.

4.6 Discussion

In this work, we showed that current state-of-the-art uncertainty estimation methods

could not consistently outperform other methods across different benchmarks. We

solved this problem by decomposing the features. Precisely, we summed the OoD

scores calculated separately on the discriminative and non-discriminative features

and achieved consistently high performance across different types of benchmarks.

Our decomposition can also help us interpret the uncertainty of OoD data by

looking at the uncertainty estimates on the discriminative/non-discriminative

features separately.



4. Decomposing Representations for Out-of-distribution Detection 44

We also note that the variants of Mahalanobis distance (Maha) all compute

distances on the full features and change the extracted information by changing the

class-dependence of the covariance matrix and the mean vectors. Although Relative

Maha and Marginal Maha can be thought of as the counterparts of our scores on

discriminative and non-discriminative features, our proposal of decomposition is

still different in that we now allow a flexible combination of discriminative and

non-discriminative scores (informed by our prior of OoD dataset or some exposure

to the OoD data), and offer an easy way to interpret the uncertainty estimates

(Figure 4.2, 4.3). Moreover, when we decompose, compute the OoD score, and

integrate by summing them up, we can achieve better OoD detection performance

compared to simply using the full features (Table 4.1, 4.2).

We hope future work can build on our analysis to develop new methods for

interpreting the uncertainty estimates and integrating different information in

features. We also hope that our dataset distance metric can serve as a reference

for developing more comprehensive evaluation methods of OoD detection.



5
Discussion

Contents
5.1 Conclusions and Limitations . . . . . . . . . . . . . . . . 45
5.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2.1 Rethinking the Bi-Lipschitz Constraint . . . . . . . . . 47
5.2.2 Interpreting the Uncertainty Estimates . . . . . . . . . . 48

5.1 Conclusions and Limitations

Representation learning for deterministic uncertainty estimation is a broad and

challenging topic. In this dissertation, we have investigated two particular prob-

lems in this field.

In Chapter 3, we investigated the representations learned by current implemen-

tations of bi-Lipschitz models. We demonstrated that the ResNets with spectral

normalization can preserve low-frequency distances and thus prevent feature collapse

in low-frequency contents under some mild conditions. This may explain the

empirical success of the previous works [22, 23, 26]. Through experiments, we

showed that the sufficient (theoretical) conditions of the bi-Lipschitzness, i.e., low-

frequency dominance and Lip(g) < 1 requirement, are often not necessary for the

feature extractor to be bi-Lipschitz in practice, suggesting that we may be able

45



5. Discussion 46

to further relax the conditions. To address these theoretical limitations, further

extensions of this work could explore how we can relax these conditions theoretically

and enforce these conditions in our model explicitly. Besides, it is also beneficial

to revisit the validity of the bi-Lipschitz constraint on the feature extractor. We

will elaborate on this direction in the next section.

In Chapter 4, we studied the interaction of representations and uncertainty

estimation. Specifically, by decomposing the representations into discriminative and

non-discriminative ones, we can explain how the differences in various OoD detection

benchmarks can influence the uncertainty estimation results. For instance, some OoD

data are closer to the in-distribution data in non-discriminative directions. Thus it is

harder to get reasonable uncertainty estimates when mainly using non-discriminative

information/representations. Based on our insights, we proposed a simple method

to integrate the uncertainty estimates calculated separately on discriminative and

non-discriminative features and achieved consistently high performance across

different types of benchmarks. Due to time constraints, we limit the experiments to

only two image OoD detection benchmarks in this project. We also lack enough

ablation studies of our decomposition method. In the future, we hope to extend this

work by experimenting with more benchmarks and conducting ablation studies to

understand further the properties of the decomposed representations (e.g., within-

class variance and between-class variance) and the influence of different components

of the decomposition. Besides, our work also sheds light on how to build interpretable

uncertainty estimation methods that can perform well across different tasks. We

will discuss this more in the next section.

5.2 Outlook

In this final section, we go further from our two projects in this dissertation

and discuss two more interesting future directions in representation learning for

deterministic uncertainty estimation.



5. Discussion 47

(a) 4-layer MLP (b) 4-layer MLP; spectral coef-
ficient = 1.

(c) 4-layer MLP; spectral coeffi-
cient = 10.

Figure 5.1: Results of softmax prediction probability of three models with different
regularization scheme on the two moon dataset. We can see that spectral normalization
has a great impact on the model capacity. Figure is taken from [83].

5.2.1 Rethinking the Bi-Lipschitz Constraint

As discussed in Chapter 3, the bi-Lipschitz constraint essentially controls how the

output of a function varies with changes in its input with a lower and upper bound.

However, it is questionable whether such constraint is desirable for representations.

In previous works, the motivation to use the bi-Lipschitz constraint is to fix

the feature collapse problem [21, 23, 26]. However, in the description of the

feature collapse, we only look at one side of the coin: the collapse of features

from OoD data with in-distribution data. While such collapse is undesirable, there

are also desirable collapse (invariance) in representations. For example, we may

want the representations to be invariant to the changes of backgrounds in object

classification tasks. Since current implementations of bi-Lipschitz models (ResNets

with spectral normalization) will enforce bi-Lipschitzness as a global property, the

desirable invariances will also be reduced. This suggests that instead of enforcing

a global bi-Lipschitz constraint, we may need to consider the task dependence of

representations and provide different (heterogeneous) regularization in different data

regions. Besides, the bi-Lipschitz constraint may also severely limit the capacity

of the model since the l2 distances in the input space are notorious for not being

an informative distance metric for natural images. In Figure 5.1, we show an

example of how spectral normalization may fail when input space distances are

not very informative about the classification.



5. Discussion 48

Therefore, although it may be beneficial to add regularization on the smoothness

(bi-Lipschitzness) of the learned function, we have to rethink how to perform it.

Conceptually, we may need to find a transformation h such that the bi-Lipschitz

constraint on the learned function with h(x) as input can consider the heterogeneity

of desirable invariances and the task-dependence. As a preliminary experiment,

during the MSc project, we have tried to combine equivariant models [84, 85] with

spectral normalization. That is, we first encode a few desired invariances using

methods like equivariant CNNs [84] and then add bi-Lipschitz regularization globally.

In this way, we may keep some desirable invariances while mitigating the undesirable

ones that cause feature collapse. Unfortunately, such models cannot provide much

empirical improvement, possibly because we have a very limited set of invariances

to encode (i.e., shift-invariance, rotation-invariance, and reflection-invariance). This

may suggest that future works should focus on learnable invariances [86] instead

of manually defined invariances when working with representation learning for

uncertainty estimation. Overall, I believe this would be a promising and fruitful

direction to explore.

5.2.2 Interpreting the Uncertainty Estimates

Uncertainty and interpretability of DNNs are normally considered as two separate

problems in trustworthy machine learning [87, 88]. The intersection of them,

i.e., interpretability of uncertainty estimation, however, is relatively less studied.

By interpreting the uncertainty estimates, we can understand why the model is

uncertain about the inputs (which is different from why the model reaches specific

predictions as investigated in current literature [89, 90]). Also, this would provide

insights for researchers to improve the current uncertainty estimation methods, e.g.,

developing uncertainty estimates that can perform consistently well in different

tasks. Therefore, I think this is also an important direction in this field.

Many methods in the interpretable AI literature may be transferred to help

explain the uncertainty. For example, the disentanglement (decomposition) of

features [91, 92] may help us understand the contributions of different types of



5. Discussion 49

features to the uncertainty. Our work in Chapter 4 is an initial attempt in this

direction. In the future, other ways to disentangle the features can be used, e.g.,

into shape, background, and texture [93]. In addition, counterfactual explanations

can also be used to explain the uncertainty estimation [94]. These methods aim

to explain the uncertainty by finding the smallest change that could be made to

an input to lower its estimated uncertainty while keeping it in distribution. It

would be interesting to see how such methods could be extended to explain the

uncertainty estimation on OoD data. Besides, the gradient visualization techniques

in explainable AI [95–97] can also help us understand the contributions of different

features to the uncertainty.

In the future, with progress in the interpretability of uncertainty estimation,

we will be able to develop more advanced methods for uncertainty estimation and

trustworthy machine learning in general.



References

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classification
with Deep Convolutional Neural Networks”. In: Advances in Neural Information
Processing Systems. Ed. by F. Pereira et al. Vol. 25. Curran Associates, Inc., 2012.
url: https://proceedings.neurips.cc/paper/2012/file/
c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[2] Kaiming He et al. “Deep Residual Learning for Image Recognition”. en. In: 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las
Vegas, NV, USA: IEEE, June 2016, pp. 770–778. url:
http://ieeexplore.ieee.org/document/7780459/ (visited on 05/31/2020).

[3] Ashish Vaswani et al. “Attention is All you Need”. In: Advances in Neural
Information Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates,
Inc., 2017. url: https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[4] Tom Brown et al. “Language Models are Few-Shot Learners”. In: Advances in
Neural Information Processing Systems. Ed. by H. Larochelle et al. Vol. 33. Curran
Associates, Inc., 2020, pp. 1877–1901. url: https://proceedings.neurips.cc/
paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

[5] Maria Joao Cardoso et al. “Artificial Intelligence (AI) in Breast Cancer Care -
Leveraging multidisciplinary skills to improve care”. In: Artificial Intelligence in
Medicine (2020), p. 102000. url:
https://www.sciencedirect.com/science/article/pii/S0933365720312653.

[6] Jonathan Waring, Charlotta Lindvall, and Renato Umeton. “Automated machine
learning: Review of the state-of-the-art and opportunities for healthcare”. In:
Artificial Intelligence in Medicine 104 (2020), p. 101822. url:
https://www.sciencedirect.com/science/article/pii/S0933365719310437.

[7] Anh Nguyen, Jason Yosinski, and Jeff Clune. “Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2015, pp. 427–436.

[8] Robert Geirhos et al. “Shortcut learning in deep neural networks”. en. In: Nature
Machine Intelligence 2.11 (Nov. 2020). Bandiera_abtest: a Cg_type: Nature
Research Journals Number: 11 Primary_atype: Reviews Publisher: Nature
Publishing Group Subject_term: Computational science;Human
behaviour;Information technology;Network models Subject_term_id:
computational-science;human-behaviour;information-technology;network-models,
pp. 665–673. url: https://www.nature.com/articles/s42256-020-00257-z
(visited on 08/23/2021).

[9] Christiane Fellbaum, ed. WordNet: An Electronic Lexical Database. en. Language,
Speech, and Communication. Cambridge, MA, USA: A Bradford Book, May 1998.

50

https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
http://ieeexplore.ieee.org/document/7780459/
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S0933365720312653
https://www.sciencedirect.com/science/article/pii/S0933365719310437
https://www.nature.com/articles/s42256-020-00257-z


References 51

[10] Mariusz Bojarski et al. “End to End Learning for Self-Driving Cars”. In: CoRR
abs/1604.07316 (2016). arXiv: 1604.07316. url:
http://arxiv.org/abs/1604.07316.

[11] NHTSA. PE 16-007. “Tesla Crash Preliminary Evaluation Report”. In: Technical
report, U.S. Department of Transportation, National Highway Traffic Safety
Administration (Jan. 2017).

[12] Kaiming He et al. “Delving Deep into Rectifiers: Surpassing Human-Level
Performance on ImageNet Classification”. In: CoRR abs/1502.01852 (2015). arXiv:
1502.01852. url: http://arxiv.org/abs/1502.01852.

[13] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

[14] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning
representations by back-propagating errors”. en. In: Nature 323.6088 (Oct. 1986).
Bandiera_abtest: a Cg_type: Nature Research Journals Number: 6088
Primary_atype: Research Publisher: Nature Publishing Group, pp. 533–536. url:
https://www.nature.com/articles/323533a0 (visited on 08/27/2021).

[15] Dan Hendrycks and Kevin Gimpel. “A Baseline for Detecting Misclassified and
Out-of-Distribution Examples in Neural Networks”. In: Proceedings of
International Conference on Learning Representations (2017).

[16] Matthias Hein, Maksym Andriushchenko, and Julian Bitterwolf. “Why ReLU
networks yield high-confidence predictions far away from the training data and how
to mitigate the problem”. In: (2019).

[17] Alexander Meinke and Matthias Hein. “Towards neural networks that provably
know when they don’t know”. In: International Conference on Learning
Representations. 2020. url: https://openreview.net/forum?id=ByxGkySKwH.

[18] Yarin Gal. “Uncertainty in Deep Learning”. In: 2016.
[19] Yarin Gal and Zoubin Ghahramani. “Dropout as a Bayesian Approximation:

Representing Model Uncertainty in Deep Learning”. In: ed. by
Maria Florina Balcan and Kilian Q. Weinberger. Vol. 48. Proceedings of Machine
Learning Research. New York, New York, USA: PMLR, 20–22 Jun 2016,
pp. 1050–1059. url: http://proceedings.mlr.press/v48/gal16.html.

[20] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. “Simple and
Scalable Predictive Uncertainty Estimation using Deep Ensembles”. In: Advances
in Neural Information Processing Systems 30. Ed. by I. Guyon et al. Curran
Associates, Inc., 2017, pp. 6402–6413. url:
http://papers.nips.cc/paper/7219-simple-and-scalable-predictive-
uncertainty-estimation-using-deep-ensembles.pdf.

[21] Joost van Amersfoort et al. “Uncertainty Estimation Using a Single Deep
Deterministic Neural Network”. In: International Conference on Machine Learning
(ICML. 2020.

[22] Balaji Lakshminarayanan et al. “Simple and Principled Uncertainty Estimation
with Deterministic Deep Learning via Distance Awareness”. In: Advances in Neural
Information Processing Systems 33. 2020.

https://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1502.01852
http://www.deeplearningbook.org
https://www.nature.com/articles/323533a0
https://openreview.net/forum?id=ByxGkySKwH
http://proceedings.mlr.press/v48/gal16.html
http://papers.nips.cc/paper/7219-simple-and-scalable-predictive-uncertainty-estimation-using-deep-ensembles.pdf
http://papers.nips.cc/paper/7219-simple-and-scalable-predictive-uncertainty-estimation-using-deep-ensembles.pdf


References 52

[23] Joost van Amersfoort et al. “On Feature Collapse and Deep Kernel Learning for
Single Forward Pass Uncertainty”. In: arXiv preprint arXiv:2102.11409 (2021).

[24] Kimin Lee et al. “A Simple Unified Framework for Detecting Out-of-Distribution
Samples and Adversarial Attacks”. In: Proceedings of the 32nd International
Conference on Neural Information Processing Systems. NIPS’18. Montréal, Canada:
Curran Associates Inc., 2018, pp. 7167–7177.

[25] Haiwen Huang et al. “Feature Space Singularity for Out-of-Distribution Detection”.
In: Proceedings of the Workshop on Artificial Intelligence Safety 2021 (SafeAI
2021). 2021.

[26] Jishnu Mukhoti et al. Deterministic Neural Networks with Appropriate Inductive
Biases Capture Epistemic and Aleatoric Uncertainty. 2021. arXiv: 2102.11582
[cs.LG].

[27] Chandramouli Shama Sastry and Sageev Oore. “Detecting Out-of-Distribution
Examples with In-distribution Examples and Gram Matrices”. In: CoRR
abs/1912.12510 (2019). arXiv: 1912.12510. url:
http://arxiv.org/abs/1912.12510.

[28] Jakob Gawlikowski et al. A Survey of Uncertainty in Deep Neural Networks. 2021.
arXiv: 2107.03342 [cs.LG].

[29] Swapnil Mishra et al. “Changing composition of SARS-CoV-2 lineages and rise of
Delta variant in England”. In: EClinicalMedicine 39 (2021), p. 101064. url:
https://www.sciencedirect.com/science/article/pii/S2589537021003448.

[30] Benjamin Recht et al. “Do ImageNet Classifiers Generalize to ImageNet?” In:
Proceedings of the 36th International Conference on Machine Learning. Ed. by
Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine
Learning Research. PMLR, Sept. 2019, pp. 5389–5400. url:
https://proceedings.mlr.press/v97/recht19a.html.

[31] Dan Hendrycks and Thomas Dietterich. “Benchmarking Neural Network
Robustness to Common Corruptions and Perturbations”. In: International
Conference on Learning Representations. 2019. url:
https://openreview.net/forum?id=HJz6tiCqYm.

[32] Chuan Guo et al. “On Calibration of Modern Neural Networks”. In: Proceedings of
the 34th International Conference on Machine Learning. Ed. by Doina Precup and
Yee Whye Teh. Vol. 70. Proceedings of Machine Learning Research. PMLR, June
2017, pp. 1321–1330. url: https://proceedings.mlr.press/v70/guo17a.html.

[33] Hao Li et al. “Visualizing the Loss Landscape of Neural Nets”. In: Advances in
Neural Information Processing Systems. Ed. by S. Bengio et al. Vol. 31. Curran
Associates, Inc., 2018. url: https://proceedings.neurips.cc/paper/2018/
file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf.

[34] Haiwen Huang, Chang Wang, and Bin Dong. “Nostalgic adam: Weighting more of
the past gradients when designing the adaptive learning rate”. In: arXiv preprint
arXiv:1805.07557 (2018).

https://arxiv.org/abs/2102.11582
https://arxiv.org/abs/2102.11582
https://arxiv.org/abs/1912.12510
http://arxiv.org/abs/1912.12510
https://arxiv.org/abs/2107.03342
https://www.sciencedirect.com/science/article/pii/S2589537021003448
https://proceedings.mlr.press/v97/recht19a.html
https://openreview.net/forum?id=HJz6tiCqYm
https://proceedings.mlr.press/v70/guo17a.html
https://proceedings.neurips.cc/paper/2018/file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf


References 53

[35] Alex Kendall and Yarin Gal. “What Uncertainties Do We Need in Bayesian Deep
Learning for Computer Vision?” In: Advances in Neural Information Processing
Systems 30. Ed. by I. Guyon et al. Curran Associates, Inc., 2017, pp. 5574–5584.
url: http://papers.nips.cc/paper/7141-what-uncertainties-do-we-need-
in-bayesian-deep-learning-for-computer-vision.pdf.

[36] Alex Kendall and Yarin Gal. “What Uncertainties Do We Need in Bayesian Deep
Learning for Computer Vision?” In: Advances in Neural Information Processing
Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates, Inc., 2017. url:
https://proceedings.neurips.cc/paper/2017/file/
2650d6089a6d640c5e85b2b88265dc2b-Paper.pdf.

[37] Stefan Depeweg et al. “Decomposition of Uncertainty in Bayesian Deep Learning
for Efficient and Risk-sensitive Learning”. In: Proceedings of the 35th International
Conference on Machine Learning. Ed. by Jennifer Dy and Andreas Krause. Vol. 80.
Proceedings of Machine Learning Research. PMLR, Oct. 2018, pp. 1184–1193. url:
https://proceedings.mlr.press/v80/depeweg18a.html.

[38] Javier Antoran, James Allingham, and José Miguel Hernández-Lobato. “Depth
Uncertainty in Neural Networks”. In: Advances in Neural Information Processing
Systems. Ed. by H. Larochelle et al. Vol. 33. Curran Associates, Inc., 2020,
pp. 10620–10634. url: https://proceedings.neurips.cc/paper/2020/file/
781877bda0783aac5f1cf765c128b437-Paper.pdf.

[39] Pablo Morales-Alvarez et al. “Activation-level uncertainty in deep neural networks”.
In: International Conference on Learning Representations. 2021. url:
https://openreview.net/forum?id=UvBPbpvHRj-.

[40] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting”. In: Journal of Machine Learning Research 15.56 (2014),
pp. 1929–1958. url: http://jmlr.org/papers/v15/srivastava14a.html.

[41] Carl Edward Rasmussen. “Gaussian processes in machine learning”. In: Summer
school on machine learning. Springer. 2003, pp. 63–71.

[42] Joost van Amersfoort et al. Improving Deterministic Uncertainty Estimation in
Deep Learning for Classification and Regression. 2021. arXiv: 2102.11409
[cs.LG].

[43] Jie Ren et al. “A Simple Fix to Mahalanobis Distance for Improving Near-OOD
Detection”. In: arXiv:2106.09022 [cs] (June 2021). arXiv: 2106.09022. url:
http://arxiv.org/abs/2106.09022 (visited on 08/03/2021).

[44] Dan Hendrycks et al. “Using Self-Supervised Learning Can Improve Model
Robustness and Uncertainty”. In: Advances in Neural Information Processing
Systems (NeurIPS) (2019).

[45] Jim Winkens et al. “Contrastive Training for Improved Out-of-Distribution
Detection”. In: CoRR abs/2007.05566 (2020). arXiv: 2007.05566. url:
https://arxiv.org/abs/2007.05566.

[46] Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. “Deep Anomaly
Detection with Outlier Exposure”. In: International Conference on Learning
Representations. 2019. url: https://openreview.net/forum?id=HyxCxhRcY7.

http://papers.nips.cc/paper/7141-what-uncertainties-do-we-need-in-bayesian-deep-learning-for-computer-vision.pdf
http://papers.nips.cc/paper/7141-what-uncertainties-do-we-need-in-bayesian-deep-learning-for-computer-vision.pdf
https://proceedings.neurips.cc/paper/2017/file/2650d6089a6d640c5e85b2b88265dc2b-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/2650d6089a6d640c5e85b2b88265dc2b-Paper.pdf
https://proceedings.mlr.press/v80/depeweg18a.html
https://proceedings.neurips.cc/paper/2020/file/781877bda0783aac5f1cf765c128b437-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/781877bda0783aac5f1cf765c128b437-Paper.pdf
https://openreview.net/forum?id=UvBPbpvHRj-
http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/2102.11409
https://arxiv.org/abs/2102.11409
http://arxiv.org/abs/2106.09022
https://arxiv.org/abs/2007.05566
https://arxiv.org/abs/2007.05566
https://openreview.net/forum?id=HyxCxhRcY7


References 54

[47] Matthias Hein, Maksym Andriushchenko, and Julian Bitterwolf. “Why ReLU
Networks Yield High-Confidence Predictions Far Away From the Training Data
and How to Mitigate the Problem”. In: 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (2018), pp. 41–50.

[48] Jiefeng Chen et al. “Robust Out-of-distribution Detection via Informative Outlier
Mining”. In: CoRR abs/2006.15207 (2020). arXiv: 2006.15207. url:
https://arxiv.org/abs/2006.15207.

[49] Takeru Miyato et al. “Spectral Normalization for Generative Adversarial
Networks”. In: International Conference on Learning Representations. 2018. url:
https://openreview.net/forum?id=B1QRgziT-.

[50] Shiyu Liang, Yixuan Li, and R. Srikant. “Enhancing The Reliability of
Out-of-distribution Image Detection in Neural Networks”. In: International
Conference on Learning Representations. 2018. url:
https://openreview.net/forum?id=H1VGkIxRZ.

[51] Ryo Kamoi and Kei Kobayashi. “Why is the Mahalanobis Distance Effective for
Anomaly Detection?” In: arXiv:2003.00402 [cs, stat] (Apr. 2020). arXiv:
2003.00402. url: http://arxiv.org/abs/2003.00402 (visited on 05/31/2020).

[52] Eric Nalisnick et al. “Do Deep Generative Models Know What They Don’t Know?”
In: International Conference on Learning Representations. 2019. url:
https://openreview.net/forum?id=H1xwNhCcYm.

[53] Robin Schirrmeister et al. “Understanding Anomaly Detection with Deep Invertible
Networks through Hierarchies of Distributions and Features”. In: Advances in
Neural Information Processing Systems. Ed. by H. Larochelle et al. Vol. 33. Curran
Associates, Inc., 2020, pp. 21038–21049. url: https://proceedings.neurips.cc/
paper/2020/file/f106b7f99d2cb30c3db1c3cc0fde9ccb-Paper.pdf.

[54] Jie Ren et al. “Likelihood Ratios for Out-of-Distribution Detection”. In: Advances
in Neural Information Processing Systems 32. Ed. by H. Wallach et al. Curran
Associates, Inc., 2019, pp. 14707–14718. url:
http://papers.nips.cc/paper/9611-likelihood-ratios-for-out-of-
distribution-detection.pdf (visited on 05/31/2020).

[55] Eric Nalisnick et al. Detecting Out-of-Distribution Inputs to Deep Generative
Models Using Typicality. 2019. arXiv: 1906.02994 [stat.ML].

[56] Robin Schirrmeister et al. “Understanding Anomaly Detection with Deep Invertible
Networks through Hierarchies of Distributions and Features”. In: Advances in
Neural Information Processing Systems. Ed. by H. Larochelle et al. Vol. 33. Curran
Associates, Inc., 2020, pp. 21038–21049. url: https://proceedings.neurips.cc/
paper/2020/file/f106b7f99d2cb30c3db1c3cc0fde9ccb-Paper.pdf.

[57] Jesse Davis and Mark Goadrich. “The Relationship between Precision-Recall and
ROC Curves”. In: Proceedings of the 23rd International Conference on Machine
Learning. ICML ’06. Pittsburgh, Pennsylvania, USA: Association for Computing
Machinery, 2006, pp. 233–240. url:
https://doi.org/10.1145/1143844.1143874.

[58] Christopher D. Manning and Hinrich Schütze. Foundations of Statistical Natural
Language Processing. Cambridge, Massachusetts: The MIT Press, 1999. url:
http://nlp.stanford.edu/fsnlp/.

https://arxiv.org/abs/2006.15207
https://arxiv.org/abs/2006.15207
https://openreview.net/forum?id=B1QRgziT-
https://openreview.net/forum?id=H1VGkIxRZ
http://arxiv.org/abs/2003.00402
https://openreview.net/forum?id=H1xwNhCcYm
https://proceedings.neurips.cc/paper/2020/file/f106b7f99d2cb30c3db1c3cc0fde9ccb-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f106b7f99d2cb30c3db1c3cc0fde9ccb-Paper.pdf
http://papers.nips.cc/paper/9611-likelihood-ratios-for-out-of-distribution-detection.pdf
http://papers.nips.cc/paper/9611-likelihood-ratios-for-out-of-distribution-detection.pdf
https://arxiv.org/abs/1906.02994
https://proceedings.neurips.cc/paper/2020/file/f106b7f99d2cb30c3db1c3cc0fde9ccb-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f106b7f99d2cb30c3db1c3cc0fde9ccb-Paper.pdf
https://doi.org/10.1145/1143844.1143874
http://nlp.stanford.edu/fsnlp/


References 55

[59] Jens Behrmann et al. “Invertible Residual Networks”. en. In: International
Conference on Machine Learning. ISSN: 2640-3498. PMLR, May 2019, pp. 573–582.
url: http://proceedings.mlr.press/v97/behrmann19a.html (visited on
12/16/2020).

[60] Henry Gouk et al. Regularisation of Neural Networks by Enforcing Lipschitz
Continuity. 2020. arXiv: 1804.04368 [stat.ML].

[61] Lewis Smith et al. Can convolutional ResNets approximately preserve input
distances? A frequency analysis perspective. 2021. arXiv: 2106.02469 [cs.LG].

[62] C.E. Shannon. “Communication in the Presence of Noise”. In: Proceedings of the
IRE 37.1 (1949), pp. 10–21.

[63] David Finlay, Peter Dodwell, and Terry Caelli. “The Waggon-Wheel Effect”. In:
Perception 13.3 (1984). PMID: 6514509, pp. 237–237. eprint:
https://doi.org/10.1068/p130237. url: https://doi.org/10.1068/p130237.

[64] Alan V Oppenheim. Discrete-time signal processing. Pearson Education India,
1999.

[65] Richard Zhang. “Making Convolutional Networks Shift-Invariant Again”. In: ICML.
2019.

[66] Sergey Zagoruyko and Nikos Komodakis. “Wide Residual Networks”. In: BMVC.
2016.

[67] Yann LeCun et al. “Gradient-based learning applied to document recognition”. In:
Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[68] Han Xiao, Kashif Rasul, and Roland Vollgraf. “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms”. In: arXiv preprint
arXiv:1708.07747 (2017).

[69] Alex Krizhevsky, Geoffrey Hinton, et al. “Learning multiple layers of features from
tiny images”. In: Tech Report (2009).

[70] George E. P. Box. “Science and Statistics”. In: Journal of the American Statistical
Association 71.356 (1976), pp. 791–799. url:
http://www.jstor.org/stable/2286841.

[71] Stephan Rabanser, Stephan Günnemann, and Zachary Lipton. “Failing Loudly: An
Empirical Study of Methods for Detecting Dataset Shift”. In: Advances in Neural
Information Processing Systems 32. Ed. by H. Wallach et al. Curran Associates,
Inc., 2019, pp. 1396–1408. url:
http://papers.nips.cc/paper/8420-failing-loudly-an-empirical-study-
of-methods-for-detecting-dataset-shift.pdf (visited on 05/31/2020).

[72] Viraj Bhise et al. “Defining and measuring diagnostic uncertainty in medicine: a
systematic review”. In: Journal of general internal medicine 33.1 (2018),
pp. 103–115.

[73] Angelos Filos et al. “Can Autonomous Vehicles Identify, Recover From, and Adapt
to Distribution Shifts?” In: International Conference on Machine Learning (ICML).
2020.

http://proceedings.mlr.press/v97/behrmann19a.html
https://arxiv.org/abs/1804.04368
https://arxiv.org/abs/2106.02469
https://doi.org/10.1068/p130237
https://doi.org/10.1068/p130237
http://www.jstor.org/stable/2286841
http://papers.nips.cc/paper/8420-failing-loudly-an-empirical-study-of-methods-for-detecting-dataset-shift.pdf
http://papers.nips.cc/paper/8420-failing-loudly-an-empirical-study-of-methods-for-detecting-dataset-shift.pdf


References 56

[74] Durk P Kingma and Prafulla Dhariwal. “Glow: Generative Flow with Invertible
1x1 Convolutions”. In: Advances in Neural Information Processing Systems. Ed. by
S. Bengio et al. Vol. 31. Curran Associates, Inc., 2018. url:
https://proceedings.neurips.cc/paper/2018/file/
d139db6a236200b21cc7f752979132d0-Paper.pdf.

[75] Dong Yin et al. “A Fourier Perspective on Model Robustness in Computer Vision”.
In: Advances in Neural Information Processing Systems. Ed. by H. Wallach et al.
Vol. 32. Curran Associates, Inc., 2019. url: https://proceedings.neurips.cc/
paper/2019/file/b05b57f6add810d3b7490866d74c0053-Paper.pdf.

[76] Siqi Deng et al. “Harnessing Unrecognizable Faces for Face Recognition”. In: CoRR
abs/2106.04112 (2021). arXiv: 2106.04112. url:
https://arxiv.org/abs/2106.04112.

[77] Kevin P. Murphy. Probabilistic Machine Learning: An introduction. MIT Press,
2022. url: probml.ai.

[78] Ryo Kamoi and Kei Kobayashi. “Why is the Mahalanobis Distance Effective for
Anomaly Detection?” In: arXiv:2003.00402 [cs, stat] (Apr. 2020). arXiv:
2003.00402. url: http://arxiv.org/abs/2003.00402 (visited on 08/03/2021).

[79] G. H. Golub and C. Reinsch. “Singular Value Decomposition and Least Squares
Solutions”. In: Numer. Math. 14.5 (Apr. 1970), pp. 403–420. url:
https://doi.org/10.1007/BF02163027.

[80] Joern-Henrik Jacobsen et al. “Excessive Invariance Causes Adversarial
Vulnerability”. In: International Conference on Learning Representations. 2019.
url: https://openreview.net/forum?id=BkfbpsAcF7.

[81] Qing Wang, Sanjeev R Kulkarni, and Sergio Verdú. “Divergence estimation for
multidimensional densities via k-nearest-neighbor distances”. In: IEEE
Transactions on Information Theory 55.5 (2009), pp. 2392–2405.

[82] Yuval Netzer et al. “Reading Digits in Natural Images with Unsupervised Feature
Learning”. In: NIPS Workshop on Deep Learning and Unsupervised Feature
Learning 2011. 2011. url:
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf.

[83] Mihaela Rosca et al. A case for new neural network smoothness constraints. 2021.
arXiv: 2012.07969 [stat.ML].

[84] Maurice Weiler and Gabriele Cesa. “General E(2)-Equivariant Steerable CNNs”. In:
Conference on Neural Information Processing Systems (NeurIPS). 2019.

[85] Taco Cohen and Max Welling. “Group Equivariant Convolutional Networks”. In:
Proceedings of The 33rd International Conference on Machine Learning. Ed. by
Maria Florina Balcan and Kilian Q. Weinberger. Vol. 48. Proceedings of Machine
Learning Research. New York, New York, USA: PMLR, 20–22 Jun 2016,
pp. 2990–2999. url: https://proceedings.mlr.press/v48/cohenc16.html.

[86] Gregory Benton et al. “Learning Invariances in Neural Networks from Training
Data”. In: Advances in Neural Information Processing Systems. Ed. by
H. Larochelle et al. Vol. 33. Curran Associates, Inc., 2020, pp. 17605–17616. url:
https://proceedings.neurips.cc/paper/2020/file/
cc8090c4d2791cdd9cd2cb3c24296190-Paper.pdf.

https://proceedings.neurips.cc/paper/2018/file/d139db6a236200b21cc7f752979132d0-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/d139db6a236200b21cc7f752979132d0-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/b05b57f6add810d3b7490866d74c0053-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/b05b57f6add810d3b7490866d74c0053-Paper.pdf
https://arxiv.org/abs/2106.04112
https://arxiv.org/abs/2106.04112
probml.ai
http://arxiv.org/abs/2003.00402
https://doi.org/10.1007/BF02163027
https://openreview.net/forum?id=BkfbpsAcF7
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
https://arxiv.org/abs/2012.07969
https://proceedings.mlr.press/v48/cohenc16.html
https://proceedings.neurips.cc/paper/2020/file/cc8090c4d2791cdd9cd2cb3c24296190-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/cc8090c4d2791cdd9cd2cb3c24296190-Paper.pdf


References 57

[87] K. Siau and Weiyu Wang. “Building Trust in Artificial Intelligence, Machine
Learning, and Robotics”. In: 2018.

[88] Philipp Schmidt and Felix Bießmann. “Quantifying Interpretability and Trust in
Machine Learning Systems”. In: CoRR abs/1901.08558 (2019). arXiv: 1901.08558.
url: http://arxiv.org/abs/1901.08558.

[89] Umang Bhatt et al. “Explainable Machine Learning in Deployment”. In:
Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency.
FAT* ’20. Barcelona, Spain: Association for Computing Machinery, 2020,
pp. 648–657. url: https://doi.org/10.1145/3351095.3375624.

[90] Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. “Methods for
interpreting and understanding deep neural networks”. In: Digital Signal
Processing 73 (2018), pp. 1–15. url:
https://www.sciencedirect.com/science/article/pii/S1051200417302385.

[91] Irina Higgins et al. “Towards a Definition of Disentangled Representations”. In:
CoRR abs/1812.02230 (2018). arXiv: 1812.02230. url:
http://arxiv.org/abs/1812.02230.

[92] Babak Esmaeili et al. “Structured Disentangled Representations”. In: Proceedings
of the Twenty-Second International Conference on Artificial Intelligence and
Statistics. Ed. by Kamalika Chaudhuri and Masashi Sugiyama. Vol. 89.
Proceedings of Machine Learning Research. PMLR, 16–18 Apr 2019,
pp. 2525–2534. url: https://proceedings.mlr.press/v89/esmaeili19a.html.

[93] Axel Sauer and Andreas Geiger. “Counterfactual Generative Networks”. In:
International Conference on Learning Representations. 2021. url:
https://openreview.net/forum?id=BXewfAYMmJw.

[94] Javier Antoran et al. “Getting a {CLUE}: A Method for Explaining Uncertainty
Estimates”. In: International Conference on Learning Representations. 2021. url:
https://openreview.net/forum?id=XSLF1XFq5h.

[95] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. “Deep Inside
Convolutional Networks: Visualising Image Classification Models and Saliency
Maps”. In: Workshop at International Conference on Learning Representations.
2014.

[96] Daniel Smilkov et al. “SmoothGrad: removing noise by adding noise”. In: CoRR
abs/1706.03825 (2017). arXiv: 1706.03825. url:
http://arxiv.org/abs/1706.03825.

[97] Mingwei Li, Zhenge Zhao, and Carlos Scheidegger. “Visualizing Neural Networks
with the Grand Tour”. In: Distill (2020). https://distill.pub/2020/grand-tour.

https://arxiv.org/abs/1901.08558
http://arxiv.org/abs/1901.08558
https://doi.org/10.1145/3351095.3375624
https://www.sciencedirect.com/science/article/pii/S1051200417302385
https://arxiv.org/abs/1812.02230
http://arxiv.org/abs/1812.02230
https://proceedings.mlr.press/v89/esmaeili19a.html
https://openreview.net/forum?id=BXewfAYMmJw
https://openreview.net/forum?id=XSLF1XFq5h
https://arxiv.org/abs/1706.03825
http://arxiv.org/abs/1706.03825

	coversheet
	MSc Computer Science_Dissertation_1359080
	Introduction
	The Importance of Uncertainty in Deep Neural Networks
	Challenges of Uncertainty Estimation in Deep Neural Networks
	Structure of the Dissertation

	Background
	Uncertainty Estimation
	Sources and Types of Uncertainty
	Methods for Uncertainty Estimation

	Out-of-distribution Detection
	What is Out-of-distribution Detection?
	Methods for Out-of-distribution Detection
	Evaluating Out-of-distribution Detection Methods


	A Frequency Analysis of the Bi-Lipschitz Regularization for Convolutional ResNets
	Introduction
	Problems of Current Implementation for Bi-Lipschitz Regularization
	A Frequency Analysis of Residual Networks with Bi-Lipschitz Regularization
	Background: Downsampling in Convolutional Networks from a Frequency Perspective
	Residual Networks and the Frequency Content of Images

	Experiments
	Discussion

	Decomposing Representations for Out-of-distribution Detection 
	Introduction
	Background
	Representation-based OoD Detection
	Mahalanobis Distance for OoD Detection

	Motivating Observations
	Decomposing Representations
	New Scoring Function Based on the Decomposition
	Dataset Distance Metric Based on Decomposition

	Experiments
	OoD Detection on Simulated Data
	OoD Detection on Image Datasets
	Interpreting Uncertainty

	Discussion

	 Discussion
	Conclusions and Limitations
	Outlook
	Rethinking the Bi-Lipschitz Constraint
	Interpreting the Uncertainty Estimates


	References


